POLARIZATIONS AND NULLCONE OF REPRESENTATIONS OF REDUCTIVE GROUPS

HANSPETER KRAFT AND NOLAN R. WALLACH

ABSTRACT. The paper starts with the following simple observation. Let V be a representation of a reductive group G, and let f_1, f_2, \ldots, f_n be homogeneous invariant functions. Then the polarizations of f_1, f_2, \ldots, f_n define the nullcone of $k \leq m$ copies of V if and only if every linear subspace L of the nullcone of V of dimension $\leq m$ is annhilated by a one-parameter subgroup (shortly a 1-PSG). This means that there is a group homomorphism $\lambda \colon \mathbb{C}^* \to G$ such that $\lim_{t \to 0} \lambda(t) x = 0$ for all $x \in L$.

This is then applied to many examples. A surprising result is about the group SL_2 where almost all representations V have the property that all linear subspaces of the nullcone are annihilated. Again, this has interesting applications to the invariants on several copies.

Another result concerns the n-qubits which appear in quantum computing. This is the representation of a product of n copies of SL_2 on the n-fold tensor product $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$. Here we show just the opposite, namely that the polarizations never define the nullcone of several copies if $n \geq 3$.

(An earlier version of this paper, distributed in 2002, was split into two parts; the first part with the title "On the nullcone of representations of reductive groups" is published in Pacific J. Math. **224** (2006), 119–140.)

1. Linear subspaces of the nullcone

In this paper we study finite dimensional complex representations of a reductive algebraic group G. It is a well-known and classical fact that the nullcone \mathcal{N}_V of such a representation V plays a fundamental role in the geometry of the representation. Recall that \mathcal{N}_V is defined to be the union of all G-orbits in V containing the origin 0 in their closure. Equivalently, \mathcal{N}_V is the zero set of all non-constant homogeneous G-invariant functions on V.

In a previous paper [KrW06] we have seen that certain linear subspaces of the nullcone play a central role for understanding its irreducible components. In this paper we will discuss arbitrary linear subspaces of the nullcone \mathcal{N}_V of a representation V of a reductive group G and show how they relate to questions about system of generators and systems of parameter for the invariants.

We first recall the definition of a polarization of a regular function $f \in \mathcal{O}(V)$. For $k \geq 1$ and arbitrary parameters t_1, \ldots, t_k we write

(1)
$$f(t_1v_1 + t_2v_2 + \dots + t_kv_k) = \sum_{i_1, i_2, \dots, i_k} P_{i_1, \dots, i_k} f(v_1, \dots, v_k) \cdot t_1^{i_1} t_2^{i_2} \cdots t_k^{i_k}.$$

Date: October 15, 2007.

The first author is partially supported by the Swiss National Science Foundation (Schweizerischer Nationalfonds), the second by an NSF summer grant.

Then the regular functions $P_{i_1,\dots,i_k}f$ defined on the sum $V^{\oplus k}$ of k copies of the original representation V are called *polarizations* of f. Here are a few well-known and easy facts.

- (a) If f is homogeneous of degree d then $P_{i_1,\dots,i_k}f$ is multihomogeneous of multidegree (i_1,\dots,i_k) and thus $i_1+\dots+i_k=d$ unless $P_{i_1,\dots,i_k}f=0$.
- (b) If f is G-invariant then so are the polarizations.
- (c) For a subset $A \subset \mathcal{O}(V)$ the algebra $\mathbb{C}[PA] \subset \mathcal{O}(V^{\oplus k})$ generated by the polarizations Pa, $a \in A$, contains all polarizations Pf for $f \in \mathbb{C}[A]$.

It is easily seen from examples that, in general, the polarizations of a system of generators do not generate the invariant ring of more than one copy (see [Sch07]). However, we might ask the following question.

Main Question. Given a set of invariant functions f_1, \ldots, f_m defining the null-cone of a representation V, when do the polarizations define the nullcone of a direct sum of several copies of V?

From now on let G denote a connected reductive group. An important tool in the context is the HILBERT-MUMFORD criterion which says that a vector $v \in V$ belongs to the nullcone \mathcal{N}_V if and only if there is a one-parameter subgroup (abbreviated: 1-PSG) $\lambda^* \colon \mathbb{C}^* \to G$ such that $\lim_{t\to 0} \lambda(t)v = 0$ ([Kr85, Kap. II]). We will say that a 1-PSG λ annihilates a subset $S \subset V$ if $\lim_{t\to 0} \lambda(t)v = 0$ for all $v \in S$.

Proposition 1. Let V be a representation of G and let f_1, f_2, \ldots, f_r be homogeneous invariants defining the nullcone \mathcal{N}_V . For every integer $m \geq 1$ the following statements are equivalent:

- (i) Every linear subspace $L \subset \mathcal{N}_V$ of dimension $\leq m$ is annihilated by a 1-PSG of G.
- (ii) The polarizations Pf_i define the nullcone of $V^{\oplus k}$ for all $k \leq m$.

Proof. By the very definition (1), the polarizations $P_{i_1,\dots,i_k}f_i$ vanish in a tuple $(v_1,\dots,v_k)\in V^{\oplus k}$ if and only if the linear span $\langle v_1,\dots,v_k\rangle$ consists of elements of the nullcone \mathcal{N}_V .

A first application is the following result about commutative reductive groups.

Proposition 2. Let D be a commutative reductive group and let V be a representation of D. Assume that $\mathcal{O}(V)^D$ is generated by the homogeneous invariants f_1, \ldots, f_r . Then the polarizations Pf_i define the nullcone of $V^{\oplus k}$ for any number k of copies of V.

Proof. The represention V has a basis (v_1,\ldots,v_n) consisting of eigenvectors of D, i.e., there are characters $\chi_i \in X(D)$ $(i=1,\ldots,n)$ such that $hv_i = \chi_i(h) \cdot v_i$ for all $h \in D$. Denote by x_1,\ldots,x_n the dual basis so that $\mathcal{O}(V) = \mathbb{C}[x_1,\ldots,x_n]$. It is well-known that the invariants are generated by the invariant monomials in the x_i . Hence, the nullcone is a union of linear subspaces: $\mathcal{N}_V = \bigcup_j L_j$, where L_j is spanned by a subset of the basis (v_1,\ldots,v_n) . If $v \in L_j$ is a general element, i.e. all coordinates are non-zero, and if $\lim_{t\to 0} \lambda(t)v = 0$, then λ also annihilates the subspace L_j . Thus every linear subspace of \mathcal{N}_V is annihilated by a 1-PSG.

Remark 1. The example of the representation of \mathbb{C}^* on \mathbb{C}^2 given by $t(x,y) := (tx, t^{-1}y)$ shows that the polarizations of the invariants do not generate the ring of invariants of more than one copy of \mathbb{C}^2 .

For the study of linear subspaces of the nullcone the following result turns out to be useful.

Proposition 3. If there is a linear subspace L of \mathcal{N}_V of a certain dimension d, then there is also a B-stable linear subspace of \mathcal{N}_V of the same dimension where B is a Borel subgroup of G.

Proof. The set of linear subspaces of the nullcone of a given dimension d is easily seen to form a closed subset Z of the Grassmanian $\operatorname{Gr}_d(V)$. Since Z is also stable under G it has to contain a closed G-orbit. Such an orbit always contains a point which is fixed by B, and this point corresponds to a B-stable linear subspace of V of dimension d.

2. Some examples

Let us give some instructive examples.

Example 1 (Orthogonal representations). Consider the standard representation of SO_n on $V = \mathbb{C}^n$. Then a subspace $L \subset V$ belongs to the nullcone if and only if L is totally isotropic with respect to the quadratic form q on V. Then V can be decomposed in the form $V = V_0 \oplus (L \oplus L')$ such that $q|_{V_0}$ is non-degenerate, L' is totally isotropic and $L \oplus L'$ is the orthogonal complement of V_0 . It follows that the 1-PSG λ of GL(V) given by

$$\lambda(t)v := \begin{cases} t \cdot v & \text{for } v \in L, \\ t^{-1} \cdot v & \text{for } v \in L', \\ v & \text{for } v \in V_0, \end{cases}$$

belongs to SO_n and annihilates L. Therefore, the polarizations of q define the nullcone of any number of copies of \mathbb{C}^n . Here the polarizations of q are given by the quadratic form q applied to each copy of V in $V^{\oplus m}$ and the associated bilinear form $\beta(v,w) := \frac{1}{2}(q(v+w)-q(v)-q(w))$ applied to each pair of copies in $V^{\oplus m}$.

Of course, this result is also an immediate consequence of the First Fundamental Theorem for O_n or SO_n (see [GoW98, Theorem 4.2.2] or [Pro07, 11.2.1]).

Example 2 (Conjugacy classes of matrices). Let GL_3 act on the 3×3 -matrices $M_3(\mathbb{C})$ by conjugation and consider the following two matrices:

$$J := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad N := \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

It is easy to see that sJ+tN is nilpotent for all $s,t\in\mathbb{C}$. However, JN is a non-zero diagonal matrix and so there is no 1-PSG which annihilates the two-dimensional subspace $L:=\langle J,N\rangle$ of the nullcone of M_3 . It follows that the polarizations of the functions $X\mapsto \operatorname{tr} X^k$ $(1\leq k\leq 3)$ do not define the nullcone of two and more copies of M_3 .

The polarizations for two copies are the following 9 homogeneous invariant functions defined for $(A, B) \in M_3 \oplus M_3$:

$$\operatorname{tr} A$$
, $\operatorname{tr} B$, $\operatorname{tr} A^2$, $\operatorname{tr} AB$, $\operatorname{tr} B^2$, $\operatorname{tr} A^3$, $\operatorname{tr} A^2B$, $\operatorname{tr} AB^2$, $\operatorname{tr} B^3$.

(Use the fact that $\operatorname{tr} ABA = \operatorname{tr} A^2B$ etc.) It is an interesting fact that these 9 functions define a subvariety Z of $M_3 \oplus M_3$ of codimension 9 and so the nullcone of $M_3 \oplus M_3$ is an irreducible component of Z. However, the invariant ring of $M_3 \oplus M_3$

has dimension 10 (= 18-8) and so a system of parameters must contain 10 elements. It was shown by Teranishi [Te86] that one obtains a system of parameters by adding the function tr ABAB, and a system of generators by adding, in addition, the function $\operatorname{tr} ABA^2B^2$.

Conjecture. The polarizations of the functions $X \mapsto \operatorname{tr} X^j$ $(j = 1, \dots, n)$ for two copies of M_n define a subvariety Z of codimension $\frac{n^2+3n}{2}$ which is a set-theoretic complete intersections and has the nullcone as an irreducible component. (Note that the number of polarizations of these n functions is $2+3+\cdots+(n+1)=$ $\frac{n^2+3n}{2}$ and that this number is also equal to the codimension of the nullcone (see [KrW06, Example 2.1]).

Remark 2. It has been shown by Gerstenhaber [Ge58] that a linear subspace Lof the nilpotent matrices \mathcal{N} in M_n of maximal possible dimension $\binom{n}{2}$ (see Proposition 3) is conjugate to the nilpotent upper triangular matrices, hence annihilated by a 1-PSG. Jointly with JAN DRAISMA and JOCHEN KUTTLER we have generalized this result to arbitrary semisimple Lie algebras, see [DKK06].

Example 3 (Symmetric matrices, see [KrW06, Example 2.4]). Consider the representation of $G := SO_4$ on $S_0^2(\mathbb{C}^4)$, the space of trace zero symmetric 4×4 -matrices. This is equivalent to the representation of $SL_2 \times SL_2$ on $V_2 \otimes V_2$ where V_2 is the space of quadratic forms in 2 variables. The invariant ring is a polynomial ring generated by the functions $f_i := \operatorname{tr} X^i$, $2 \le i \le 4$. A direct calculation shows that every two-dimensional subspace of the nullcone is annihilated by a 1-PSG. This implies that the polarizations of the functions f_2, f_3, f_4 define the nullcone for two copies of $S_0^2(\mathbb{C}^4)$. Since the number of polarizations is 12 = 3 + 4 + 5 which is the dimension of the invariant ring (i.e. of the quotient $(S_0^2(\mathbb{C}^4) \oplus S_0^2(\mathbb{C}^4)) /\!\!/ SO_4)$, we see that these 12 polarizations form a system of parameters. (This completes the analysis given in [WaW00].)

These examples show that there are two basic questions in this context:

Question 1. What are the linear subspaces of the nullcone of a representation V?

Question 2. Given a linear subspace $U \subset \mathcal{N}_V$ of the nullcone of a representation V, is there a 1-PSG which annihilates U?

We now give a general construction where we get a negative answer to Question 2 above. Denote by $\mathbb{C}^2 = \mathbb{C}e_0 \oplus \mathbb{C}e_1$ the standard representation of SL_2 .

Proposition 4. Let V be a representation of a reductive group H. Consider the representation $W := \mathbb{C}^2 \otimes V$ of $G := \operatorname{SL}_2 \times H$.

- (a) For every $v \in V$ the subspace $\mathbb{C}^2 \otimes v$ belongs to the nullcone \mathcal{N}_W .
- (b) If $v \in V \setminus \mathcal{N}_V$ then there is no 1-PSG λ of G such that $\lim_{t\to 0} \lambda(t)w = 0$ for all $w \in \mathbb{C}^2 \otimes v$.

Proof. (1) Clearly, $e_0 \otimes v \in \mathcal{N}_W$ for any $v \in V$. Hence $\{g e_0 \otimes v \mid g \in SL_2\} \subset \mathcal{N}_W$,

and the claim follows since $\mathbb{C}^2 \otimes v = \{g \ e_0 \otimes v \mid g \in \operatorname{SL}_2\} \cup \{0\}$.

(2) Assume that $\lim_{t\to 0} \lambda(t)w = 0$ for all $w \in \mathbb{C}^2 \otimes v$. Write $v = \sum v_j$ such that $\lambda(t)v_j = t^j \cdot v_j$ and choose $f \in \mathbb{C}^2$ such that $\lambda(t)f = t^s \cdot f$ where $s \leq 0$. Since $v \notin \mathcal{N}_V$ there exists a $k \leq 0$ such that $v_k \neq 0$. Then $\lambda(t)(f \otimes v_k) = t^{s+k} \cdot (f \otimes v_k)$ which leads to a contradiction since $s + k \leq 0$.

Corollary 1. If the representation V admits non-constant G-invariants, then the polarizations of the invariants of $W := \mathbb{C}^2 \otimes V$ do not define the nullcone of 2 or more copies of W.

Corollary 2. For $n \geq 3$ the polarizations of the invariants of the n-qubits $Q_n := \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$ (n factors) under $\operatorname{SL}_2 \times \operatorname{SL}_2 \times \cdots \times \operatorname{SL}_2$ do not define the nullcone of two or more copies of Q_n .

3. General polarizations

For our applications we have to generalize the notion of polarization introduced in Section 1. Let V be a finite dimensional vector space and $f \in \mathcal{O}(V^{\oplus k})$ a (multihomogeneous) regular function on k copies of V. Fixing $m \geq k$ and using parameters t_{ij} , $1 \leq i \leq k$, $1 \leq j \leq m$ where $m \geq k$ we write, for $(v_1, v_2, \ldots, v_m) \in V^{\oplus m}$,

(2)
$$f(\sum_{j} t_{1j}v_{j}, \sum_{j} t_{2j}v_{j}, \cdots, \sum_{j} t_{kj}v_{j}) = \sum_{A} t^{A}P_{A}f(v_{1}, v_{2}, \dots, v_{m}).$$

where $A=(a_{ij})$ runs through the $k\times m$ -matrices with non-negative integers a_{ij} and $t^A:=\prod_{ij}t_{ij}^{a_{ij}}$. The regular (multihomogeneous) functions $P_Af\in\mathcal{O}(V^{\oplus m})$ obtained in this way are again called *polarizations* of f. As before, if V is a representation of G and f a G-invariant function, then so are the polarizations P_Af . The next lemma is an immediate consequence of the definition.

Lemma 1. Let $f \in \mathcal{O}(V^{\oplus k})$, $v_1, \ldots, v_m \in V$ where $m \geq k$ and denote by $U := \langle v_1, v_2, \ldots, v_m \rangle \subset V$ the linear span of v_1, \ldots, v_m . Then the following two statements are equivalent.

- (i) f vanishes on $U^{\oplus m} \subset V^{\oplus m}$.
- (ii) $P_A f(v_1, \dots, v_m) = 0$ for all polarizations $P_A f$ of f.

Let us go back to the general situation of a representation of a connected reductive group G on a vector space V. Denote by \mathcal{L}_V the set of linear subspaces of V which are annihilated by a 1-PSG of G and which are maximal under this condition, and by \mathcal{M}_V the set of all maximal linear subspaces of the nullcone \mathcal{N}_V of V.

We can regard \mathcal{L}_V and \mathcal{M}_V as closed G-stable subvarieties of the Grassmannian $\operatorname{Gr}(V) = \bigcup_{1 \leq d \leq \dim V} \operatorname{Gr}_d(V)$. We have seen in [KrW06] that \mathcal{L}_V consists of a finite number of closed orbits. In particular, $\dim \mathcal{L}_V \leq \dim G/B$.

Proposition 5. Let k < m be positive integers and assume that the invariant functions $f_1, \ldots, f_n \in \mathcal{O}(V^{\oplus k})^G$ define the nullcone $\mathcal{N}_{V^{\oplus k}}$. If every linear subspace $U \subset \mathcal{N}_V$ with $k < \dim U \leq m$ is annihilated by a 1-PSG, then the polarizations $P_A f_i$ define the nullcone $\mathcal{N}_{V^{\oplus m}}$ of $V^{\oplus m}$.

Proof. Assume that for a given $v=(v_1,\ldots,v_m)$ we have $P_Af_i(v_1,\ldots,v_m)=0$ for all polarizations P_Af_i . Define $U:=\langle v_1,\ldots,v_m\rangle$. By the lemma above $U^{\oplus k}$ belongs to the nullcone of $V^{\oplus k}$, hence $U\subset \mathcal{N}_V$. If $\dim U>k$, then by assumption U is annihilated by a 1-PSG and so $(v_1,\ldots,v_m)\in \mathcal{N}_{V^{\oplus m}}$.

If dim $U \leq k$, then, after possible rearrangement of $\{v_1, \ldots, v_m\}$, we can assume that $U = \langle v_1, \ldots, v_k \rangle$. Since $(v_1, \ldots, v_k) \in \mathcal{N}_{V^{\oplus k}}$, by assumption, it follows again that U is annihilated by a 1-PSG.

Example 4. For the standard representation of SL_n on $V := \mathbb{C}^n$ there are no invariants for less than n copies, and $\mathcal{O}(V^{\oplus n})^{\operatorname{SL}_n} = \mathbb{C}[\det]$. Therefore, the determinants $\det(v_{i_1}v_{i_2}\cdots v_{i_n})$ define the nullcone on any number of copies of V. In fact, one knows that they even generate the ring of invariants, by the so-called "First Fundamental Theorem for SL_n " (see [Pro07, 11.1.2]).

Example 5. For the standard representation of Sp_{2n} on $V := \mathbb{C}^{2n}$ there are no invariants on one copy, and $\mathcal{O}(V \oplus V)^{\operatorname{Sp}_{2n}} = \mathbb{C}[f]$ where f(u,v) is the skew form defining $\operatorname{Sp}_{2n} \subset \operatorname{GL}_{2n}$. As in the orthogonal case (see Example 1), one easily sees that every linear subspace of the nullcone is annihilated by a 1-PSG. Hence, the skew forms $f_{ij} = f(v_i, v_j)$ define the nullcone of any number of copies of V. Again, the "First Fundamental Theorem" shows that these invariants even generate the invariant ring (see [GoW98, Theorem 4.2.2] or [Pro07, 11.2.1]).

Example 6 (see Example 2). Applying the proposition to the case of the adjoint representation of GL_n on the matrices M_n we get the following result. If the invariants f_1, \ldots, f_k define the nullcone of $\binom{n}{2} - 1$ copies of M_n , then the polarizations $P_A f_i$ define the nullcone of any number of copies of M_n .

For n = 3 this implies (see Example 2) that the traces $\{\operatorname{tr} A_i, \operatorname{tr} A_i A_j, \operatorname{tr} A_i A_j A_k, \operatorname{tr} A_i A_j A_k A_\ell\}$ define the nullcone of any number of copies of M_3 .

Let m_V denote the maximal dimension of a linear subspace of the nullcone \mathcal{N}_V .

Corollary 3. If $f_1, \ldots, f_n \in \mathcal{O}(V^{\oplus m_V})^G$ define the nullcone $\mathcal{N}_{V^{\oplus m_V}}$, then the polarizations $P_A f_i$ define the nullcone of any number of copies of V.

4. Nullcone of several copies of binary forms

In this section we study the invariants and the nullcone of representations of the group SL_2 . We denote by $V_n := \mathbb{C}[x,y]_n$ the binary forms of degree n considered as a representation of SL_2 . Recall that in this setting the form $y^n \in V_n$ is a highest weight vector with respect to the standard Borel subgroup $B \subset \mathrm{SL}_2$ of upper triangular matrices.

The main result of this section is the following.

Theorem 4. Consider the irreducible representation V_n of SL_2 . Assume that n > 1 and that the homogeneous invariant functions $f_1, f_2, \ldots, f_m \in \mathcal{O}(V_n)^{SL_2}$ define the nullcone of V_n . Then the polarizations of the f_i 's for any number N of copies of V_n define the nullcone of $V_n^{\oplus N}$.

The following result is a main step in the proof.

Lemma 2. Let $h_1, h_2 \in V_n$ be two non-zero binary forms. Assume that every non-zero linear combination $\alpha h_1 + \beta h_2$ has a linear factor of multiplicity $> \frac{n}{2}$. Then h_1 and h_2 have a common linear factor of multiplicity $> \frac{n}{2}$.

Proof. We can assume that h_1 and h_2 are linearly independent. Fix a number $k \in \mathbb{N}$ such $\frac{n}{2} < k \le n$ and define the following subsets of $V_n \oplus V_1$:

$$Y_k := \{ (f, \ell) \in V_n \oplus V_1 \mid \ell^k \text{ divides } f \}.$$

This is a closed subset of $V_n \oplus V_1$, because $Y_k = \operatorname{SL}_2 \cdot (W \oplus \mathbb{C}y)$ where $W := \bigoplus_{i=k}^n \mathbb{C}x^{n-i}y^i$, and $W \oplus \mathbb{C}y$ is a *B*-stable linear subspace of $V_n \oplus V_1$. Moreover,

 Y_k is stable under the action of \mathbb{C}^* by scalar multiplication on V_1 . Therefore, the quotient $Y_k \setminus (W \times \{0\})/\mathbb{C}^*$ is a vector bundle $p \colon \mathcal{V}_k \to \mathbb{P}(V_1)$, namely the subbundle of the trivial bundle $V_n \times \mathbb{P}(V_1)$ whose fiber over $[\ell]$ is the subspace $\ell^k \cdot V_{n-k} \subset V_n$. It is clear that this vector bundle can be identified with the associated bundle $\mathrm{SL}_2 \times^B W \to \mathrm{SL}_2/B = \mathbb{P}^1$.

Now consider the following subset of $\mathbb{C}^2 \times \mathbb{P}(V_1)$

$$\mathcal{L}_k := \{ ((\alpha, \beta), [\ell]) \in \mathbb{C}^2 \times \mathbb{P}(V_1) \mid \ell^k \text{ divides } \alpha h_1 + \beta h_2 \}.$$

 \mathcal{L}_k is the inverse image of \mathcal{V}_k under the morphism $\varphi \colon \mathbb{C}^2 \times \mathbb{P}(V_1) \to V_n \times \mathbb{P}(V_1)$ given by $((\alpha, \beta), [\ell]) \mapsto (\alpha h_1 + \beta h_2, [\ell])$, and so \mathcal{L}_k is a closed subvariety of $\mathbb{C}^2 \times \mathbb{P}(V_1)$. Since φ is a closed immersion we can identify \mathcal{L}_k with a closed subvariety of the \mathcal{V}_k .

If two linearly independent members f_1, f_2 of the family $\alpha h_1 + \beta h_2$ have the same linear factor ℓ of multiplicity $\geq k$, then all the members of the family have this factor and we are done. Otherwise, the morphism $p \colon \mathcal{L}_k \to \mathbb{P}(V_1)$ induced by the projection is surjective and the fibers are lines of the form $\mathbb{C}f \times \{[\ell]\}$. Hence \mathcal{L}_k is a subbundle of \mathcal{V}_k . It follows from the construction of \mathcal{L}_k as a subbundle of the trivial bundle of rank 2 that \mathcal{L}_k is isomorphic to $\mathcal{O}(-1)$. The following Lemma 3 shows that this bundle cannot occur as a subbundle of $\mathrm{SL}_2 \times^B W \to \mathrm{SL}_2/B = \mathbb{P}^1$ provided that n > 1.

Remark 3. It was shown by Matthias Bürgin in his thesis (see [Bü06]) that the following generalization of Lemma 2 holds. Let $f, h \in \mathbb{C}[t]$ be two polynomials and k an integer ≥ 2 . Assume that every linear combination $\lambda f + \mu h$ has a root of multiplicity $\geq k$. Then f and h have a common root of multiplicity $\geq k$.

Lemma 3. Denote by V_n^+ the B-stable subspace of V_n consisting of positive weights. Then we have

$$\operatorname{SL}_2 \times^B V_n^+ \simeq \begin{cases} \mathcal{O}(-k)^k & \text{if } n = 2k-1, \\ \mathcal{O}(-k-1)^k & \text{if } n = 2k. \end{cases}$$

Proof. If M is a B-module we denote by M(i) the module obtained from M by tensoring with the character $\begin{bmatrix} t & 0 \\ 0 & t^{-1} \end{bmatrix} \mapsto t^i$. If $\mathcal{V}(M) := \operatorname{SL}_2 \times^B M$ then $\mathcal{V}(M(i)) = \mathcal{V}(M)(-i)$. With this notation we have the following isomorphisms as B-modules:

$$V_{2k-1}^+ \simeq V_{k-1}(k)$$
 and $V_{2k}^+ \simeq V_{k-1}(k+1)$.

Since $\operatorname{SL}_2 \times^B V_m$ is the trivial bundle of rank m+1 the claim follows.

Now we can give the proof of our Main Theorem of this section.

Proof of Theorem 4. Let $h=(h_1,h_2,\ldots,h_N)\in V_n^N$ an n-tupel of forms such that all polarizations of all f_i vanish on h. This implies that $f_i(\alpha_1h_1+\alpha_2h_2+\cdots+\alpha_Nh_N)=0$ for all $(\alpha_1,\alpha_2,\ldots,\alpha_N)\in\mathbb{C}^N$ and all i's. It follows that $\alpha_1h_1+\alpha_2h_2+\cdots+\alpha_Nh_N$ belongs to the nullcone of V_n for all $(\alpha_1,\alpha_2,\ldots,\alpha_N)\in\mathbb{C}^N$, hence they all have a linear factor ℓ of multiplicity $>\frac{n}{2}$. Using Lemma 2 above, an easy induction shows that the h_i must have a common linear factor ℓ of multiplicity $>\frac{n}{2}$. Thus h belongs to the nullcone of V_n .

From the proof above we immediately get the following generalization of our Theorem 4.

Theorem 5. Consider the representation $V = V_{n_1} \oplus V_{n_2} \oplus \cdots \oplus V_{n_k}$ of SL_2 , where $1 < n_1 < n_2 < \cdots < n_k$. Assume that the multihomogeneous invariant functions $f_1, f_2, \ldots, f_m \in \mathcal{O}(V)^{\operatorname{SL}_2}$ define the nullcone of V. Then the polarizations of the f_i 's to the representation $\tilde{V} = V_{n_1}^{N_1} \oplus V_{n_2}^{N_2} \oplus \cdots \oplus V_{n_k}^{N_k}$ for any k-tuple (N_1, N_2, \ldots, N_k) define the nullcone of \tilde{V} .

Remark 4. One can also include the case $n_1 = 1$ by either assuming that $N_1 = 1$ or by adding the invariants [i,j] of $V_1^{N_1}$ to the set of polarizations. (Recall that $[i,j](\ell_1,\ldots,\ell_N) := [\ell_i,\ell_j] := \alpha_i\beta_j - \alpha_j\beta_i$ where $\ell_i = \alpha_i x + \beta_i y \in V_1$.) Since the covariants $\mathcal{O}(V)^U$ can be identified with the invariants $\mathcal{O}(V \oplus V_1)$ the theorem above has some interesting consequences for covariants.

Example 7 (Covariants of V_3^N). The covariants of V_3^N can be identified with the invariants of $V_3^N \oplus V_1$. The case N=1 is well-known and classical: $\mathcal{O}(V_3 \oplus V_1)^{\operatorname{SL}_2} = \mathbb{C}[h, f_{1,3}, f_{2,2}, f_{3,3}]$, where h is the discriminant of V_3 and the $f_{i,j}$ are bihomogenous invariants of degree (i,j) corresponding to $V_3 \subset \mathcal{O}(V_3)_1$, $V_2 \subset \mathcal{O}(V_3)_2$ and $V_1 \subset \mathcal{O}(V_3)_3$. Recall that an embedding $V_n \subset \mathcal{O}(V_3)_d$ defines a covariant $\varphi \colon V_3 \to V_n$ of degree d and thus an invariant $f_{d,n} \colon (f,\ell) \mapsto [\varphi(f),\ell^n]$ where the bracket $[\cdot,\cdot]$ denotes the invariant bilinear form on $V_n \times V_n$.

It is easy to see that $h, f_{1,3}, f_{2,2}$ form a system of parameters, i.e. define the nullcone of $V_3 \oplus V_1$. Therefore, their polarizations (in the variables of V_3) define the nullcone of $V_3^N \oplus V_1$ for any $N \geq 1$. Therefore, we always have a system of parameters in degree 4 and thus can easily calculate the HILBERT series for small N, e.g.:

$$\operatorname{Hilb}_{V_3^2 \oplus V_1} = \frac{h_2}{(1-t^2)(1-t^4)^6}$$
 and $\operatorname{Hilb}_{V_3^3 \oplus V_1} = \frac{h_3}{(1-t^2)^3(1-t^4)^8}$

where

$$h_2 := 1 + 6t^4 + 13t^6 + 12t^8 + 13t^{10} + 6t^{12} + t^{16}$$

and

$$h_3 := 1 + 24t^4 + 62t^6 + 177t^8 + 300t^{10} + 320t^{12} + 300t^{14} + 177t^{16} + 62t^{18} + 24t^{20} + t^{24}$$

For the calculation we use the fact (due to KNOP [Kn89]) that the degree of the HILBERT series is $\leq -\dim V$ and that the numerator is palindromic since the invariant ring is Gorenstein. The Theorem of Weyl implies that the covariants for V_3^N are obtained from those of V_3^3 by polarization. Since the representation is symplectic they are even obtained from V_3^2 by polarization (see Schwarz [Sch87]).

5. Generators and system of parameters for the invariants of 3-qubits

Lemma 4. Consider the polynomial ring $\mathbb{C}[a_{11}, a_{22}, a_{33}, a_{12}, a_{13}, a_{23}]$ in the coefficients of a quadratic form in 3 variables and put

$$d := \det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}.$$

Then the elements $\{a_{11}-a_{22}, a_{22}-a_{33}, a_{12}, a_{13}, a_{23}, d\}$ form a homogeneous system of parameters.

Proof. The proof is easy: One simply shows that the zero set of these functions is the origin. \Box

Let us now consider N copies of the standard representation \mathbb{C}^n of the complex orthogonal group $O_n = O_n(\mathbb{C})$: $W := \mathbb{C}^N \otimes \mathbb{C}^n$. The first fundamental theorems for O_n and SO_n tells us that the invariants under O_n are generated by the quadratic invariants $\sum_{\nu=1}^n x_{i\nu} x_{j\nu}$ ($1 \le i \le j \le N$) and that for SO_n we have to add the $n \times n$ minors of the matrix $(x_{i\nu})$. In terms of representation theory this means the following. We have (by CAUCHY'S formula)

$$S^2\mathbb{C}^N\otimes\mathbb{C}\subset S^2(\mathbb{C}^N\otimes\mathbb{C}^n)$$
 and $\bigwedge^n\mathbb{C}^N\otimes\mathbb{C}\subset S^n(\mathbb{C}^N\otimes\mathbb{C}^n),$

where \mathbb{C} denotes the trivial representation of SO_n , and these subspaces form a generating system for $S(\mathbb{C}^N \otimes \mathbb{C}^n)^{SO_n}$.

As before we denote by V_m the irreducible representation of SL_2 of dimension m+1. We apply the above first to the the case of three copies of the irreducible 3-dimensional representation V_2 of SL_2 : $W=\mathbb{C}^3\otimes V_2$. Then the subspaces $S^2\mathbb{C}^3\otimes V_0$ and $\bigwedge^3\mathbb{C}^3\otimes V_0$ form a minimal generating system for the SL_2 -invariants. Thus we get 6 generators in degree 2 and one generator in degree 3.

Now we consider the space $\mathbb{C}^3 \otimes V_2$ as a representation of $SO_3 \times SL_2$ and denote the 6 quadratic generators by $a_{11}, a_{22}, a_{33}, a_{12}, a_{13}, a_{23}$ with the obvious meaning. Then the cubic generator q satisfies the relation

$$q^2 = \det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}.$$

Moreover, the space $S^2\mathbb{C}^3$ decomposes under SO₃ into the direct sum of two irreducible representations

$$S^2\mathbb{C}^3 = S_0^2\mathbb{C}^3 \oplus \mathbb{C}$$

where \mathbb{C} is the trivial representation. In terms of coordinates, \mathbb{C} is spanned by $a_{11}+a_{22}+a_{33}$ and $S_0^2\mathbb{C}^3$ by $\{a_{11}-a_{22},a_{22}-a_{33},a_{12},a_{13},a_{23}\}$. With Lemma 6 above we therefore have the following result.

Proposition 6. Consider the representation $W := \mathbb{C}^3 \otimes V_2$ of $SO_3 \times SL_2$. Then the 5-dimensional subspace $S_0^2(\mathbb{C}^3) \otimes V_0 \subset S^2(W)$ together with the 1-dimensional subspace $\bigwedge^3 \mathbb{C}^3 \otimes V_0 \subset S^3(W)$ form a homogeneous system of parameters for the invariants $S(W)^{SL_2}$.

We want to apply this to the invariants of two copies of 3-qubits, i.e. to the representation

$$V := V_1 \otimes V_1 \otimes V_1 \oplus V_1 \otimes V_1 \otimes V_1 = \mathbb{C}^2 \otimes V_1 \otimes V_1 \otimes V_1$$

of $G := \mathrm{SL}_2 \times \mathrm{SL}_2 \times \mathrm{SL}_2$. We consider this as a representation of $\mathrm{SL}_2 \times \mathrm{SO}_4$:

$$V = \mathbb{C}^2 \otimes V_1 \otimes \mathbb{C}^4$$

where \mathbb{C}^4 is the standard representation of SO_4 . As a representation of SO_4 this is the direct sum of 4 copies of the standard representation. Therefore, the SO_4 invariants are generated by $S^2(\mathbb{C}^2 \otimes V_1) \otimes V_0 \subset S^2(V)$ and $\bigwedge^4(\mathbb{C}^2 \otimes V_1) \otimes V_0 \subset S^4(V)$,

i.e. we have ten generators in degree 2 and one generator q_4 in degree 4. Moreover, the induced morphism

$$\pi_1 \colon V \to S^2(\mathbb{C}^2 \otimes V_1)$$

is surjective (and homogeneous of degree 2), and π_1 is the quotient map under O_4 . The generator q_4 is invariant under the full group G. The 10-dimensional representation $S^2(\mathbb{C}^2 \otimes V_1)$ decomposes under SL_2 in the form

$$S^{2}(\mathbb{C}^{2} \otimes V_{1}) = S^{2}(\mathbb{C}^{2}) \otimes V_{2} \oplus \bigwedge^{2} \mathbb{C}^{2} \otimes V_{0} = \mathbb{C}^{3} \otimes V_{2} \oplus \mathbb{C} \otimes V_{0}.$$

Thus there is G-invariant q_2 in degree 2 given by the second summand. We have seen above that the SL_2 -invariants of $\mathbb{C}^3 \otimes V_2$ are generated by six invariants in degree 2 and one in degree 3, represented by the subspaces $S^2(\mathbb{C}^3) \otimes V_0 \subset S^2(\mathbb{C}^3 \otimes V_2)$ and $\bigwedge^3 \mathbb{C}^3 \otimes V_0 \subset S^3(\mathbb{C}^3 \otimes V_2)$. This proves the first part of the following theorem. The second part is an immediate consequence of Proposition 6 above.

Theorem 6. The $SL_2 \times SL_2 \times SL_2$ -invariants of $(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2)^{\oplus 2}$ are generated by one invariant q_2 in degree 2, seven invariants p_1, \ldots, p_6, q_4 in degree 4 and one invariant q_6 in degree 6. A homogeneous system of parameters for the invariant ring is given by $q_2, p_1, \ldots, p_5, q_6$ where p_1, \ldots, p_5 span the subspace $S_0^2(\mathbb{C}^3) \otimes V_0$ stable under SO_3 acting on \mathbb{C}^3 .

Remark 5. The generating invariants have the following bi-degrees: $\deg q_2 = (1,1)$, $\deg q_4 = (2,2)$, $\deg q_6 = (3,3)$, and the bi-degrees of the p_i 's are (4,0), (3,1), (2,2), (2,2), (1,3), (0,4).

Remark 6. The invariants of $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ under $G = \operatorname{SL}_2 \times \operatorname{SL}_2 \times \operatorname{SL}_2$ are generated by one invariant p of degree 4. It is given by the consecutive quotient maps

$$p \colon \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbb{C}^2 \otimes \mathbb{C}^4 \xrightarrow{/\operatorname{SO}_4} S^2 \mathbb{C}^2 = V_2 \xrightarrow{/\operatorname{SL}_2} \mathbb{C}.$$

The nullcone $p^{-1}(0)$ is irreducible of dimension 7 and contains a dense orbit, namely the orbit of $v_0 := e_1 \otimes e_1 \otimes e_0 + e_1 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_1$. (In fact, it easy to see, by HILBERT's criterion, that v_0 is in the nullcone; moreover, the annihilator of v_0 in Lie G has dimension 2, hence Gv_0 is an orbit of dimension 7.) Therefore, all fibres of p are irreducible (of dimension 7) and contain a dense orbit. More precisely, we have the following result. (We use the notation $e_{ijk} := e_i \otimes e_j \otimes e_k$.)

Proposition 7. The nullcone of $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ contains six orbits, the origin $\{0\}$, the orbit Ge_{111} of the highest weight vector which is of dimension 4, the dense orbit $G(e_{110} + e_{101} + e_{011})$ of dimension 7, and the three orbits of the elements $e_{100} + e_{010}$, $e_{010} + e_{001}$, $e_{001} + e_{100}$ which are of dimension 5 and which are permuted under the symmetric group S_3 permuting the three factors in the tensor product.

Proof. The weight vector e_{ijk} has weight

$$\varepsilon_{ijk} := ((-1)^{i+1}, (-1)^{j+1}, (-1)^{k+1}) \in \mathbb{Z}^3 = X(\mathbb{C}^* \times \mathbb{C}^* \times \mathbb{C}^*)$$

and so the set X_V of weights of $V := \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ consists of the vertices of a cube in \mathbb{R}^3 centered in the origin. There are four maximal unstable subset of X_V in the sense of [KrW06, Definition 1.1], up to the action of the Weyl group, namely the set of vertices of the three faces of the cube containing the highest weight ε_{111} ,

and the set $\{\varepsilon_{111}, \varepsilon_{011}, \varepsilon_{101}, \varepsilon_{110}\}$. The corresponding maximal unstable subspaces of V are (see [KrW06, Definition 1.2]):

$$W_1 := \langle e_{111}, e_{110}, e_{101}, e_{100} \rangle$$

$$W_2 := \langle e_{111}, e_{110}, e_{011}, e_{010} \rangle$$

$$W_3 := \langle e_{111}, e_{011}, e_{101}, e_{001} \rangle$$

$$U := \langle e_{111}, e_{011}, e_{101}, e_{110} \rangle.$$

It follows that the nullcone is given as a union

$$\mathcal{N}_V = GU \cup GW_1 \cup GW_2 \cup GW_3.$$

The subspace U is stabilized by $B \times B \times B$ whereas $W_1 = e_1 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ is stable under $B \times \operatorname{SL}_2 \times \operatorname{SL}_2$, and similarly for W_2 and W_3 . Since the spaces W_i are not stable under G we get $\dim GW_i = \dim W_i + 1 = 5$, and so $GU = \mathcal{N}_V$.

The group $\operatorname{SL}_2 \times \operatorname{SL}_2$ has three orbits in $\mathbb{C}^2 \otimes \mathbb{C}^2$, the dense orbit of $e_1 \otimes e_0 + e_0 \otimes e_1$, the highest weight orbit of $e_1 \otimes e_1$, and $\{0\}$. This shows that $\overline{G(e_{110} + e_{101})} = GW_1$ and that $GW_1 \setminus G(e_{110} + e_{101}) \subset \overline{Ge_{111}}$, and similarly for W_2 and W_3 . One also sees that the elements $e_{110} + e_{101}$, $e_{110} + e_{011}$, and $e_{101} + e_{011}$ represent three different orbits of dimension 5, all containing the highest weight orbit in their closure. In fact, $GW_1 = \{ge_1 \otimes v \mid g \in G \text{ and } v \in \mathbb{C}^2 \otimes \mathbb{C}^2\}$, and so $ge_1 \otimes v$ is not in W_2 except if v is a multiple of $ge_1 \otimes ge_1$. In particular, $GW_1 \cap GW_2 \cap GW_3 = \overline{Ge_{111}}$.

Finally, it is easy to see that
$$(B \otimes B \otimes B)v_0 = \mathbb{C}^* e_{110} \times \mathbb{C}^* e_{101} \times \mathbb{C}^* e_{011} \times \mathbb{C} e_{111}$$
.
Hence, $\overline{Gv_0} = GU = \mathcal{N}_V$ and $\mathcal{N}_V \setminus Gv_0 \subset GW_1 \cup GW_2 \cup GW_3$.

Proposition 8. The invariants in degree 4 of any number of copies of Q_3 define the nullcone. In particular, for any $N \geq 1$ there is a system of parameters of $Q_3^{\oplus N}$ in degree 4.

Proof. We can identify $\mathbb{C}^N \otimes Q_3$, as a representation of SL_2^3 , with $\mathbb{C}^N \otimes \mathbb{C}^2 \otimes \mathbb{C}^4$, as a representation of $\mathrm{SL}_2 \times \mathrm{SO}_4$. The quotient of $\mathbb{C}^N \otimes \mathbb{C}^2 \otimes \mathbb{C}^4$ by O_4 is given by

$$\pi: \mathbb{C}^N \otimes \mathbb{C}^2 \otimes \mathbb{C}^4 \to S^2(\mathbb{C}^N \otimes \mathbb{C}^2),$$

where the image of π is the closed cone of symmetric matrices of rank ≤ 4 (First Fundamental Theorem for the orthogonal group, see [GoW98, Theorem 4.2.2] or [Pro07, 11.2.1]). This means that the O₄-invariants are generated by the obvious quadratic invariants. Moreover, the morphism π is SL_2 -equivariant.

As a representation of SL_2 we have

$$S^2(\mathbb{C}^N \otimes \mathbb{C}^2) = S^2(\mathbb{C}^N) \otimes V_2 \oplus \bigwedge^2 \mathbb{C}^N \otimes \mathbb{C}$$

where V_2 is the 3-dimensional irreducible representation of SL_2 corresponding to the standard representation of SO_3 , and \mathbb{C} denotes the trivial representation. Again, consider this as a representation of O_3 . Then the O_3 -invariants are generated by the quadratic (and the linear) invariants. Summing up we see that the invariant ring

$$(\mathcal{O}(\mathbb{C}^n\otimes Q_3)^{\mathrm{O}_4})^{\mathrm{O}_3}$$

is generated by the elements of degree 2 and 4. By construction,

$$(\mathcal{O}(\mathbb{C}^n \otimes Q_3)^{\mathrm{O}_4})^{\mathrm{O}_3} \subset (\mathcal{O}(\mathbb{C}^n \otimes Q_3)^{\mathrm{SL}_2 \times \mathrm{SL}_2})^{\mathrm{SL}_2} = \mathcal{O}(\mathbb{C}^n \otimes Q_3)^{\mathrm{SL}_2 \times \mathrm{SL}_2 \times \mathrm{SL}_2}$$

and the latter is a finite module over the former. Therefore, both quotients have the same nullcone and so the nullcone is defined by invariants in degree 2 and 4. \Box

Remark 7. The representation $Q_3 \oplus Q_3$ has one invariant of degree 2 and eight invariants of degree 4. Since the dimension of the quotient is 7 it follows that there is a system of parameters for the invariant ring consisting of seven invariants of degree 4. A priori it is not clear that there is also a system of parameters consisting of one invariant of degree 2 and six invariants of degree 4 as suggested by the HILBERT series which has the form

$$\operatorname{Hilb}_{Q_3 \oplus Q_3} = \frac{1 + t^4 + t^6 + t^{10}}{(1 - t^2)(1 - t^4)^6}.$$

However, the analysis above shows that in case of 2 copies of Q_3 we obtain the following composition of quotient maps

$$\pi\colon Q_3\oplus Q_3 \xrightarrow{\pi_1} S^2\mathbb{C}^2\otimes V_2\oplus \mathbb{C} \xrightarrow{\pi_2} S^2S^2\mathbb{C}^2\oplus \mathbb{C}$$

where π_1 is the quotient by O_4 and π_2 the quotient by O_3 . Since both morphisms π_1 and π_2 are surjective in this case it follows that the zero fiber \mathcal{N} of π is defined by the quadratic invariant and six invariants of degree 4. As we remarked above the (reduced) zero fiber of π is the nullcone of $Q_3 \oplus Q_3$ with respect to $SL_2 \times SL_2 \times SL_2$, hence these seven invariants form a homogeneous system of parameters for the ring of invariants.

References

[Bü06] Bürgin, M.: Nullforms, Polarization, and Tensor Powers Thesis, University of Basel, 2006.

[DKK06] Draisma, J.; Kraft, H.; Kuttler, J.: Nilpotent subspaces of maximal dimension in semisimple Lie algebras. Compositio Math. 142 (2006) 464–476.

[Ge58] Gerstenhaber, M.: On nilalgebras and linear varieties of nilpotent matrices, I. Amer. J. Math. 80 (1958) 614–622.

[GoW98] Goodman, R.; Wallach, N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge, 1998.

[Kn89] Knop, F.: Der kanonische Modul eines Invariantenringes. J. Algebra 127 (1989) 40-54.

[Kr85] Kraft, H.: Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, vol. D1, Vieweg Verlag, Braunschweig/Wiesbaden, 1985. (2., durchgesehene Auflage)

[KrW06] Kraft, H. and Wallach, N.R.: On the nullcone of representations of reductive groups. Pacific J. Math. 224 (2006), 119–140.

[MeW02] Meyer, D. A. and Wallach, N.: Invariants for multiple qubits: the case of 3 qubits. Mathematics of quantum computation, 77–97, Comput. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2002.

[Pro07] Procesi, C.: Lie Groups: An Approach through Invariants and Representations. Springer Universitext, Springer Verlag, New York, 2007.

[Sch87] Schwarz, G. W.: On classical invariant theory and binary cubics. Ann. Inst. Fourier 37 (1987) 191–216.

[Sch07] Schwarz, G. W.: When do polarizations generate? Transformation Groups (2007), to appear.

[Te86] Teranishi, Y.: The ring of invariants of matrices. Nagoya Math. J. 104 (1986) 149–161.

[WaW00] Wallach, N. R.; Willenbring, J.: On some q-analogs of a theorem of Kostant-Rallis. Canadian J. Math. **52** (2000) 438–448.

Hanspeter Kraft

MATHEMATISCHES INSTITUT DER UNIVERSITÄT BASEL, RHEINSPRUNG 21, CH-4051 BASEL, SWITZERLAND NOLAN R. WALLACH
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, SAN DIEGO
9500 GILMAN DRIVE, LA JOLLA, CA 92093-0112, USA
E-mail address: Hanspeter.Kraft@unibas.ch, nwallach@uscd.edu