POLARIZATIONS AND NULLCONE OF REPRESENTATIONS OF REDUCTIVE GROUPS

HANSPETER KRAFT AND NOLAN R. WALLACH

Abstract

The paper starts with the following simple observation. Let V be a representation of a reductive group G, and let $f_{1}, f_{2}, \ldots, f_{n}$ be homogeneous invariant functions. Then the polarizations of $f_{1}, f_{2}, \ldots, f_{n}$ define the nullcone of $k \leq m$ copies of V if and only if every linear subspace L of the nullcone of V of dimension $\leq m$ is annhilated by a one-parameter subgroup (shortly a 1-PSG). This means that there is a group homomorphism $\lambda: \mathbb{C}^{*} \rightarrow G$ such that $\lim _{t \rightarrow 0} \lambda(t) x=0$ for all $x \in L$.

This is then applied to many examples. A surprising result is about the group SL_{2} where almost all representations V have the property that all linear subspaces of the nullcone are annihilated. Again, this has interesting applications to the invariants on several copies.

Another result concerns the n-qubits which appear in quantum computing. This is the representation of a product of n copies of SL_{2} on the n-fold tensor product $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}$. Here we show just the opposite, namely that the polarizations never define the nullcone of several copies if $n \geq 3$.

(An earlier version of this paper, distributed in 2002, was split into two parts; the first part with the title "On the nullcone of representations of reductive groups" is published in Pacific J. Math. 224 (2006), 119-140.)

1. Linear subspaces of the nullcone

In this paper we study finite dimensional complex representations of a reductive algebraic group G. It is a well-known and classical fact that the nullcone \mathcal{N}_{V} of such a representation V plays a fundamental role in the geometry of the representation. Recall that \mathcal{N}_{V} is defined to be the union of all G-orbits in V containing the origin 0 in their closure. Equivalently, \mathcal{N}_{V} is the zero set of all non-constant homogeneous G-invariant functions on V.

In a previous paper [KrW06] we have seen that certain linear subspaces of the nullcone play a central role for understanding its irreducible components. In this paper we will discuss arbitrary linear subspaces of the nullcone \mathcal{N}_{V} of a representation V of a reductive group G and show how they relate to questions about system of generators and systems of parameter for the invariants.

We first recall the definition of a polarization of a regular function $f \in \mathcal{O}(V)$. For $k \geq 1$ and arbitrary parameters t_{1}, \ldots, t_{k} we write

$$
\begin{equation*}
f\left(t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{k} v_{k}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{k}} P_{i_{1}, \cdots, i_{k}} f\left(v_{1}, \ldots, v_{k}\right) \cdot t_{1}^{i_{1}} t_{2}^{i_{2}} \cdots t_{k}^{i_{k}} \tag{1}
\end{equation*}
$$

[^0]Then the regular functions $P_{i_{1}, \cdots, i_{k}} f$ defined on the sum $V^{\oplus k}$ of k copies of the original representation V are called polarizations of f. Here are a few well-known and easy facts.
(a) If f is homogeneous of degree d then $P_{i_{1}, \cdots, i_{k}} f$ is multihomogeneous of multidegree $\left(i_{1}, \cdots, i_{k}\right)$ and thus $i_{1}+\cdots+i_{k}=d$ unless $P_{i_{1}, \cdots, i_{k}} f=0$.
(b) If f is G-invariant then so are the polarizations.
(c) For a subset $A \subset \mathcal{O}(V)$ the algebra $\mathbb{C}[P A] \subset \mathcal{O}\left(V^{\oplus k}\right)$ generated by the polarizations $P a, a \in A$, contains all polarizations $P f$ for $f \in \mathbb{C}[A]$.
It is easily seen from examples that, in general, the polarizations of a system of generators do not generate the invariant ring of more than one copy (see [Sch07]). However, we might ask the following question.
Main Question. Given a set of invariant functions f_{1}, \ldots, f_{m} defining the nullcone of a representation V, when do the polarizations define the nullcone of a direct sum of several copies of V ?

From now on let G denote a connected reductive group. An important tool in the context is the Hilbert-Mumford criterion which says that a vector $v \in V$ belongs to the nullcone \mathcal{N}_{V} if and only if there is a one-parameter subgroup (abbreviated: 1 -PSG) $\lambda^{*}: \mathbb{C}^{*} \rightarrow G$ such that $\lim _{t \rightarrow 0} \lambda(t) v=0([\mathrm{Kr} 85, \mathrm{Kap} . \mathrm{II}])$. We will say that a 1-PSG λ annihilates a subset $S \subset V$ if $\lim _{t \rightarrow 0} \lambda(t) v=0$ for all $v \in S$.

Proposition 1. Let V be a representation of G and let $f_{1}, f_{2}, \ldots, f_{r}$ be homogeneous invariants defining the nullcone \mathcal{N}_{V}. For every integer $m \geq 1$ the following statements are equivalent:
(i) Every linear subspace $L \subset \mathcal{N}_{V}$ of dimension $\leq m$ is annihilated by a 1-PSG of G.
(ii) The polarizations $P f_{i}$ define the nullcone of $V^{\oplus k}$ for all $k \leq m$.

Proof. By the very definition (1), the polarizations $P_{i_{1}, \cdots, i_{k}} f_{i}$ vanish in a tuple $\left(v_{1}, \ldots, v_{k}\right) \in V^{\oplus k}$ if and only if the linear span $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ consists of elements of the nullcone \mathcal{N}_{V}.

A first application is the following result about commutative reductive groups.
Proposition 2. Let D be a commutative reductive group and let V be a representation of D. Assume that $\mathcal{O}(V)^{D}$ is generated by the homogeneous invariants f_{1}, \ldots, f_{r}. Then the polarizations $P f_{i}$ define the nullcone of $V^{\oplus k}$ for any number k of copies of V.
Proof. The represention V has a basis $\left(v_{1}, \ldots, v_{n}\right)$ consisting of eigenvectors of D, i.e., there are characters $\chi_{i} \in X(D)(i=1, \ldots, n)$ such that $h v_{i}=\chi_{i}(h) \cdot v_{i}$ for all $h \in D$. Denote by x_{1}, \ldots, x_{n} the dual basis so that $\mathcal{O}(V)=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. It is well-known that the invariants are generated by the invariant monomials in the x_{i}. Hence, the nullcone is a union of linear subspaces: $\mathcal{N}_{V}=\bigcup_{j} L_{j}$, where L_{j} is spanned by a subset of the basis $\left(v_{1}, \ldots, v_{n}\right)$. If $v \in L_{j}$ is a general element, i.e. all coordinates are non-zero, and if $\lim _{t \rightarrow 0} \lambda(t) v=0$, then λ also annihilates the subspace L_{j}. Thus every linear subspace of \mathcal{N}_{V} is annihilated by a 1-PSG.

Remark 1. The example of the representation of \mathbb{C}^{*} on \mathbb{C}^{2} given by $t(x, y):=$ ($t x, t^{-1} y$) shows that the polarizations of the invariants do not generate the ring of invariants of more than one copy of \mathbb{C}^{2}.

For the study of linear subspaces of the nullcone the following result turns out to be useful.

Proposition 3. If there is a linear subspace L of \mathcal{N}_{V} of a certain dimension d, then there is also a B-stable linear subspace of \mathcal{N}_{V} of the same dimension where B is a Borel subgroup of G.

Proof. The set of linear subspaces of the nullcone of a given dimension d is easily seen to form a closed subset Z of the Grassmanian $\operatorname{Gr}_{d}(V)$. Since Z is also stable under G it has to contain a closed G-orbit. Such an orbit always contains a point which is fixed by B, and this point corresponds to a B-stable linear subspace of V of dimension d.

2. Some examples

Let us give some instructive examples.
Example 1 (Orthogonal representations). Consider the standard representation of SO_{n} on $V=\mathbb{C}^{n}$. Then a subspace $L \subset V$ belongs to the nullcone if and only if L is totally isotropic with respect to the quadratic form q on V. Then V can be decomposed in the form $V=V_{0} \oplus\left(L \oplus L^{\prime}\right)$ such that $\left.q\right|_{V_{0}}$ is non-degenerate, L^{\prime} is totally isotropic and $L \oplus L^{\prime}$ is the orthogonal complement of V_{0}. It follows that the 1-PSG λ of GL (V) given by

$$
\lambda(t) v:= \begin{cases}t \cdot v & \text { for } v \in L \\ t^{-1} \cdot v & \text { for } v \in L^{\prime} \\ v & \text { for } v \in V_{0}\end{cases}
$$

belongs to SO_{n} and annihilates L. Therefore, the polarizations of q define the nullcone of any number of copies of \mathbb{C}^{n}. Here the polarizations of q are given by the quadratic form q applied to each copy of V in $V^{\oplus m}$ and the associated bilinear form $\beta(v, w):=\frac{1}{2}(q(v+w)-q(v)-q(w))$ applied to each pair of copies in $V^{\oplus m}$.

Of course, this result is also an immediate consequence of the First Fundamental Theorem for O_{n} or SO_{n} (see [GoW98, Theorem 4.2.2] or [Pro07, 11.2.1]).

Example 2 (Conjugacy classes of matrices). Let GL_{3} act on the 3×3-matrices $M_{3}(\mathbb{C})$ by conjugation and consider the following two matrices:

$$
J:=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad N:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

It is easy to see that $s J+t N$ is nilpotent for all $s, t \in \mathbb{C}$. However, $J N$ is a non-zero diagonal matrix and so there is no 1-PSG which annihilates the two-dimensional subspace $L:=\langle J, N\rangle$ of the nullcone of M_{3}. It follows that the polarizations of the functions $X \mapsto \operatorname{tr} X^{k}(1 \leq k \leq 3)$ do not define the nullcone of two and more copies of M_{3}.

The polarizations for two copies are the following 9 homogeneous invariant functions defined for $(A, B) \in M_{3} \oplus M_{3}$:

$$
\operatorname{tr} A, \operatorname{tr} B, \operatorname{tr} A^{2}, \operatorname{tr} A B, \operatorname{tr} B^{2}, \operatorname{tr} A^{3}, \operatorname{tr} A^{2} B, \operatorname{tr} A B^{2}, \operatorname{tr} B^{3} .
$$

(Use the fact that $\operatorname{tr} A B A=\operatorname{tr} A^{2} B$ etc.) It is an interesting fact that these 9 functions define a subvariety Z of $M_{3} \oplus M_{3}$ of codimension 9 and so the nullcone of $M_{3} \oplus M_{3}$ is an irreducible component of Z. However, the invariant ring of $M_{3} \oplus M_{3}$
has dimension $10(=18-8)$ and so a system of parameters must contain 10 elements. It was shown by Teranishi [Te86] that one obtains a system of parameters by adding the function $\operatorname{tr} A B A B$, and a system of generators by adding, in addition, the function $\operatorname{tr} A B A^{2} B^{2}$.

Conjecture. The polarizations of the functions $X \mapsto \operatorname{tr} X^{j}(j=1, \ldots, n)$ for two copies of M_{n} define a subvariety Z of codimension $\frac{n^{2}+3 n}{2}$ which is a set-theoretic complete intersections and has the nullcone as an irreducible component.
(Note that the number of polarizations of these n functions is $2+3+\cdots+(n+1)=$ $\frac{n^{2}+3 n}{2}$ and that this number is also equal to the codimension of the nullcone (see [KrW06, Example 2.1]).
Remark 2. It has been shown by Gerstenhaber [Ge58] that a linear subspace L of the nilpotent matrices \mathcal{N} in M_{n} of maximal possible dimension $\binom{n}{2}$ (see Proposition 3) is conjugate to the nilpotent upper triangular matrices, hence annihilated by a 1-PSG. Jointly with Jan Draisma and Jochen Kuttler we have generalized this result to arbitrary semisimple Lie algebras, see [DKK06].

Example 3 (Symmetric matrices, see [KrW06, Example 2.4]). Consider the representation of $G:=\mathrm{SO}_{4}$ on $S_{0}^{2}\left(\mathbb{C}^{4}\right)$, the space of trace zero symmetric 4×4-matrices. This is equivalent to the representation of $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ on $V_{2} \otimes V_{2}$ where V_{2} is the space of quadratic forms in 2 variables. The invariant ring is a polynomial ring generated by the functions $f_{i}:=\operatorname{tr} X^{i}, 2 \leq i \leq 4$. A direct calculation shows that every two-dimensional subspace of the nullcone is annihilated by a 1-PSG. This implies that the polarizations of the functions f_{2}, f_{3}, f_{4} define the nullcone for two copies of $S_{0}^{2}\left(\mathbb{C}^{4}\right)$. Since the number of polarizations is $12=3+4+5$ which is the dimension of the invariant ring (i.e. of the quotient $\left.\left(S_{0}^{2}\left(\mathbb{C}^{4}\right) \oplus S_{0}^{2}\left(\mathbb{C}^{4}\right)\right) / / \mathrm{SO}_{4}\right)$, we see that these 12 polarizations form a system of parameters. (This completes the analysis given in [WaW00].)

These examples show that there are two basic questions in this context:
Question 1. What are the linear subspaces of the nullcone of a representation V?
Question 2. Given a linear subspace $U \subset \mathcal{N}_{V}$ of the nullcone of a representation V, is there a 1-PSG which annihilates U ?

We now give a general construction where we get a negative answer to Question 2 above. Denote by $\mathbb{C}^{2}=\mathbb{C} e_{0} \oplus \mathbb{C} e_{1}$ the standard representation of SL_{2}.

Proposition 4. Let V be a representation of a reductive group H. Consider the representation $W:=\mathbb{C}^{2} \otimes V$ of $G:=\mathrm{SL}_{2} \times H$.
(a) For every $v \in V$ the subspace $\mathbb{C}^{2} \otimes v$ belongs to the nullcone \mathcal{N}_{W}.
(b) If $v \in V \backslash \mathcal{N}_{V}$ then there is no 1-PSG λ of G such that $\lim _{t \rightarrow 0} \lambda(t) w=0$ for all $w \in \mathbb{C}^{2} \otimes v$.

Proof. (1) Clearly, $e_{0} \otimes v \in \mathcal{N}_{W}$ for any $v \in V$. Hence $\left\{g e_{0} \otimes v \mid g \in \mathrm{SL}_{2}\right\} \subset N_{W}$, and the claim follows since $\mathbb{C}^{2} \otimes v=\left\{g e_{0} \otimes v \mid g \in \mathrm{SL}_{2}\right\} \cup\{0\}$.
(2) Assume that $\lim _{t \rightarrow 0} \lambda(t) w=0$ for all $w \in \mathbb{C}^{2} \otimes v$. Write $v=\sum v_{j}$ such that $\lambda(t) v_{j}=t^{j} \cdot v_{j}$ and choose $f \in \mathbb{C}^{2}$ such that $\lambda(t) f=t^{s} \cdot f$ where $s \leq 0$. Since $v \notin \mathcal{N}_{V}$ there exists a $k \leq 0$ such that $v_{k} \neq 0$. Then $\lambda(t)\left(f \otimes v_{k}\right)=t^{s+k} \cdot\left(f \otimes v_{k}\right)$ which leads to a contradiction since $s+k \leq 0$.

Corollary 1. If the representation V admits non-constant G-invariants, then the polarizations of the invariants of $W:=\mathbb{C}^{2} \otimes V$ do not define the nullcone of 2 or more copies of W.
Corollary 2. For $n \geq 3$ the polarizations of the invariants of the n-qubits $Q_{n}:=$ $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}$ (n factors) under $\mathrm{SL}_{2} \times \mathrm{SL}_{2} \times \cdots \times \mathrm{SL}_{2}$ do not define the nullcone of two or more copies of Q_{n}.

3. General polarizations

For our applications we have to generalize the notion of polarization introduced in Section 1. Let V be a finite dimensional vector space and $f \in \mathcal{O}\left(V^{\oplus k}\right)$ a (multihomogeneous) regular function on k copies of V. Fixing $m \geq k$ and using parameters $t_{i j}, 1 \leq i \leq k, 1 \leq j \leq m$ where $m \geq k$ we write, for $\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in V^{\oplus m}$,

$$
\begin{equation*}
f\left(\sum_{j} t_{1 j} v_{j}, \sum_{j} t_{2 j} v_{j}, \cdots, \sum_{j} t_{k j} v_{j}\right)=\sum_{A} t^{A} P_{A} f\left(v_{1}, v_{2}, \ldots, v_{m}\right) . \tag{2}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ runs through the $k \times m$-matrices with non-negative integers $a_{i j}$ and $t^{A}:=\prod_{i j} t_{i j}^{a_{i j}}$. The regular (multihomogeneous) functions $P_{A} f \in \mathcal{O}\left(V^{\oplus m}\right)$ obtained in this way are again called polarizations of f. As before, if V is a representation of G and f a G-invariant function, then so are the polarizations $P_{A} f$. The next lemma is an immediate consequence of the definition.
Lemma 1. Let $f \in \mathcal{O}\left(V^{\oplus k}\right), v_{1}, \ldots, v_{m} \in V$ where $m \geq k$ and denote by $U:=$ $\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle \subset V$ the linear span of v_{1}, \ldots, v_{m}. Then the following two statements are equivalent.
(i) f vanishes on $U^{\oplus m} \subset V^{\oplus m}$.
(ii) $P_{A} f\left(v_{1}, \ldots, v_{m}\right)=0$ for all polarizations $P_{A} f$ of f.

Let us go back to the general situation of a representation of a connected reductive group G on a vector space V. Denote by \mathcal{L}_{V} the set of linear subspaces of V which are annihilated by a 1-PSG of G and which are maximal under this condition, and by \mathcal{M}_{V} the set of all maximal linear subspaces of the nullcone \mathcal{N}_{V} of V.

We can regard \mathcal{L}_{V} and \mathcal{M}_{V} as closed G-stable subvarieties of the Grassmannian $\operatorname{Gr}(V)=\bigcup_{1 \leq d \leq \operatorname{dim} V} \operatorname{Gr}_{d}(V)$. We have seen in [KrW06] that \mathcal{L}_{V} consists of a finite number of closed orbits. In particular, $\operatorname{dim} \mathcal{L}_{V} \leq \operatorname{dim} G / B$.
Proposition 5. Let $k<m$ be positive integers and assume that the invariant functions $f_{1}, \ldots, f_{n} \in \mathcal{O}\left(V^{\oplus k}\right)^{G}$ define the nullcone $\mathcal{N}_{V \oplus k}$. If every linear subspace $U \subset \mathcal{N}_{V}$ with $k<\operatorname{dim} U \leq m$ is annihilated by a 1-PSG, then the polarizations $P_{A} f_{i}$ define the nullcone $\mathcal{N}_{V \oplus m}$ of $V^{\oplus m}$.
Proof. Assume that for a given $v=\left(v_{1}, \ldots, v_{m}\right)$ we have $P_{A} f_{i}\left(v_{1}, \ldots, v_{m}\right)=0$ for all polarizations $P_{A} f_{i}$. Define $U:=\left\langle v_{1}, \ldots, v_{m}\right\rangle$. By the lemma above $U^{\oplus k}$ belongs to the nullcone of $V^{\oplus k}$, hence $U \subset \mathcal{N}_{V}$. If $\operatorname{dim} U>k$, then by assumption U is annihilated by a 1-PSG and so $\left(v_{1}, \ldots, v_{m}\right) \in \mathcal{N}_{V \oplus m}$.

If $\operatorname{dim} U \leq k$, then, after possible rearrangement of $\left\{v_{1}, \ldots, v_{m}\right\}$, we can assume that $U=\left\langle v_{1}, \ldots, v_{k}\right\rangle$. Since $\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{N}_{V^{\oplus k}}$, by assumption, it follows again that U is annihilated by a 1-PSG.

Example 4. For the standard representation of SL_{n} on $V:=\mathbb{C}^{n}$ there are no invariants for less than n copies, and $\mathcal{O}\left(V^{\oplus n}\right)^{\mathrm{SL}_{n}}=\mathbb{C}[\operatorname{det}]$. Therefore, the determinants $\operatorname{det}\left(v_{i_{1}} v_{i_{2}} \cdots v_{i_{n}}\right)$ define the nullcone on any number of copies of V. In fact, one knows that they even generate the ring of invariants, by the so-called "First Fundamental Theorem for SL_{n} " (see [Pro07, 11.1.2]).

Example 5. For the standard representation of $\mathrm{Sp}_{2 n}$ on $V:=\mathbb{C}^{2 n}$ there are no invariants on one copy, and $\mathcal{O}(V \oplus V)^{\mathrm{Sp}_{2 n}}=\mathbb{C}[f]$ where $f(u, v)$ is the skew form defining $\mathrm{Sp}_{2 n} \subset \mathrm{GL}_{2 n}$. As in the orthogonal case (see Example 1), one easily sees that every linear subspace of the nullcone is annihilated by a 1-PSG. Hence, the skew forms $f_{i j}=f\left(v_{i}, v_{j}\right)$ define the nullcone of any number of copies of V. Again, the "First Fundamental Theorem" shows that these invariants even generate the invariant ring (see [GoW98, Theorem 4.2.2] or [Pro07, 11.2.1]).
Example 6 (see Example 2). Applying the proposition to the case of the adjoint representation of GL_{n} on the matrices M_{n} we get the following result. If the invariants f_{1}, \ldots, f_{k} define the nullcone of $\binom{n}{2}-1$ copies of M_{n}, then the polarizations $P_{A} f_{i}$ define the nullcone of any number of copies of M_{n}.

For $n=3$ this implies (see Example 2) that the traces $\left\{\operatorname{tr} A_{i}, \operatorname{tr} A_{i} A_{j}, \operatorname{tr} A_{i} A_{j} A_{k}\right.$, $\left.\operatorname{tr} A_{i} A_{j} A_{k} A_{\ell}\right\}$ define the nullcone of any number of copies of M_{3}.

Let m_{V} denote the maximal dimension of a linear subspace of the nullcone \mathcal{N}_{V}.
Corollary 3. If $f_{1}, \ldots, f_{n} \in \mathcal{O}\left(V^{\oplus m_{V}}\right)^{G}$ define the nullcone $\mathcal{N}_{V^{\oplus m_{V}}}$, then the polarizations $P_{A} f_{i}$ define the nullcone of any number of copies of V.

4. Nullcone of several copies of binary forms

In this section we study the invariants and the nullcone of representations of the group SL_{2}. We denote by $V_{n}:=\mathbb{C}[x, y]_{n}$ the binary forms of degree n considered as a representation of SL_{2}. Recall that in this setting the form $y^{n} \in V_{n}$ is a highest weight vector with respect to the standard Borel subgroup $B \subset \mathrm{SL}_{2}$ of upper triangular matrices.

The main result of this section is the following.
Theorem 4. Consider the irreducible representation V_{n} of SL_{2}. Assume that $n>1$ and that the homogeneous invariant functions $f_{1}, f_{2}, \ldots, f_{m} \in \mathcal{O}\left(V_{n}\right)^{\mathrm{SL}_{2}}$ define the nullcone of V_{n}. Then the polarizations of the f_{i} 's for any number N of copies of V_{n} define the nullcone of $V_{n}^{\oplus N}$.

The following result is a main step in the proof.
Lemma 2. Let $h_{1}, h_{2} \in V_{n}$ be two non-zero binary forms. Assume that every nonzero linear combination $\alpha h_{1}+\beta h_{2}$ has a linear factor of multiplicity $>\frac{n}{2}$. Then h_{1} and h_{2} have a common linear factor of multiplicity $>\frac{n}{2}$.
Proof. We can assume that h_{1} and h_{2} are linearly independent. Fix a number $k \in \mathbb{N}$ such $\frac{n}{2}<k \leq n$ and define the following subsets of $V_{n} \oplus V_{1}$:

$$
Y_{k}:=\left\{(f, \ell) \in V_{n} \oplus V_{1} \mid \ell^{k} \text { divides } f\right\}
$$

This is a closed subset of $V_{n} \oplus V_{1}$, because $Y_{k}=\mathrm{SL}_{2} \cdot(W \oplus \mathbb{C} y)$ where $W:=$ $\bigoplus_{i=k}^{n} \mathbb{C} x^{n-i} y^{i}$, and $W \oplus \mathbb{C} y$ is a B-stable linear subspace of $V_{n} \oplus V_{1}$. Moreover,
Y_{k} is stable under the action of \mathbb{C}^{*} by scalar multiplication on V_{1}. Therefore, the quotient $Y_{k} \backslash(W \times\{0\}) / \mathbb{C}^{*}$ is a vector bundle $p: \mathcal{V}_{k} \rightarrow \mathbb{P}\left(V_{1}\right)$, namely the subbundle of the trivial bundle $V_{n} \times \mathbb{P}\left(V_{1}\right)$ whose fiber over $[\ell]$ is the subspace $\ell^{k} \cdot V_{n-k} \subset V_{n}$. It is clear that this vector bundle can be identified with the associated bundle $\mathrm{SL}_{2} \times{ }^{B} W \rightarrow \mathrm{SL}_{2} / B=\mathbb{P}^{1}$.

Now consider the following subset of $\mathbb{C}^{2} \times \mathbb{P}\left(V_{1}\right)$

$$
\mathcal{L}_{k}:=\left\{((\alpha, \beta),[\ell]) \in \mathbb{C}^{2} \times \mathbb{P}\left(V_{1}\right) \mid \ell^{k} \text { divides } \alpha h_{1}+\beta h_{2}\right\}
$$

\mathcal{L}_{k} is the inverse image of \mathcal{V}_{k} under the morphism $\varphi: \mathbb{C}^{2} \times \mathbb{P}\left(V_{1}\right) \rightarrow V_{n} \times \mathbb{P}\left(V_{1}\right)$ given by $((\alpha, \beta),[\ell]) \mapsto\left(\alpha h_{1}+\beta h_{2},[\ell]\right)$, and so \mathcal{L}_{k} is a closed subvariety of $\mathbb{C}^{2} \times \mathbb{P}\left(V_{1}\right)$. Since φ is a closed immersion we can identify \mathcal{L}_{k} with a closed subvariety of the \mathcal{V}_{k}.

If two linearly independent members f_{1}, f_{2} of the family $\alpha h_{1}+\beta h_{2}$ have the same linear factor ℓ of multiplicity $\geq k$, then all the members of the family have this factor and we are done. Otherwise, the morphism $p: \mathcal{L}_{k} \rightarrow \mathbb{P}\left(V_{1}\right)$ induced by the projection is surjective and the fibers are lines of the form $\mathbb{C} f \times\{[\ell]\}$. Hence \mathcal{L}_{k} is a subbundle of \mathcal{V}_{k}. It follows from the construction of \mathcal{L}_{k} as a subbundle of the trivial bundle of rank 2 that \mathcal{L}_{k} is isomorphic to $\mathcal{O}(-1)$. The following Lemma 3 shows that this bundle cannot occur as a subbundle of $\mathrm{SL}_{2} \times{ }^{B} W \rightarrow \mathrm{SL}_{2} / B=\mathbb{P}^{1}$ provided that $n>1$.

Remark 3. It was shown by Matthias Bürgin in his thesis (see [Bü06]) that the following generalization of Lemma 2 holds. Let $f, h \in \mathbb{C}[t]$ be two polynomials and k an integer ≥ 2. Assume that every linear combination $\lambda f+\mu h$ has a root of multiplicity $\geq k$. Then f and h have a common root of multiplicity $\geq k$.

Lemma 3. Denote by V_{n}^{+}the B-stable subspace of V_{n} consisting of positive weights. Then we have

$$
\mathrm{SL}_{2} \times{ }^{B} V_{n}^{+} \simeq \begin{cases}\mathcal{O}(-k)^{k} & \text { if } n=2 k-1 \\ \mathcal{O}(-k-1)^{k} & \text { if } n=2 k\end{cases}
$$

Proof. If M is a B-module we denote by $M(i)$ the module obtained from M by tensoring with the character $\left[\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right] \mapsto t^{i}$. If $\mathcal{V}(M):=\mathrm{SL}_{2} \times{ }^{B} M$ then $\mathcal{V}(M(i))=$ $\mathcal{V}(M)(-i)$. With this notation we have the following isomorphisms as B-modules:

$$
V_{2 k-1}^{+} \simeq V_{k-1}(k) \quad \text { and } \quad V_{2 k}^{+} \simeq V_{k-1}(k+1)
$$

Since $\mathrm{SL}_{2} \times{ }^{B} V_{m}$ is the trivial bundle of rank $m+1$ the claim follows.
Now we can give the proof of our Main Theorem of this section.
Proof of Theorem 4. Let $h=\left(h_{1}, h_{2}, \ldots, h_{N}\right) \in V_{n}^{N}$ an n-tupel of forms such that all polarizations of all f_{i} vanish on h. This implies that $f_{i}\left(\alpha_{1} h_{1}+\alpha_{2} h_{2}+\cdots+\right.$ $\left.\alpha_{N} h_{N}\right)=0$ for all $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \in \mathbb{C}^{N}$ and all i 's. It follows that $\alpha_{1} h_{1}+\alpha_{2} h_{2}+$ $\cdots+\alpha_{N} h_{N}$ belongs to the nullcone of V_{n} for all $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \in \mathbb{C}^{N}$, hence they all have a linear factor ℓ of multiplicity $>\frac{n}{2}$. Using Lemma 2 above, an easy induction shows that the h_{i} must have a common linear factor ℓ of multiplicity $>\frac{n}{2}$. Thus h belongs to the nullcone of V_{n}^{N}.

From the proof above we immediately get the following generalization of our Theorem 4.

Theorem 5. Consider the representation $V=V_{n_{1}} \oplus V_{n_{2}} \oplus \cdots \oplus V_{n_{k}}$ of SL_{2}, where $1<n_{1}<n_{2}<\cdots<n_{k}$. Assume that the multihomogeneous invariant functions $f_{1}, f_{2}, \ldots, f_{m} \in \mathcal{O}(V)^{\mathrm{SL}_{2}}$ define the nullcone of V. Then the polarizations of the f_{i} 's to the representation $\tilde{V}=V_{n_{1}}^{N_{1}} \oplus V_{n_{2}}^{N_{2}} \oplus \cdots \oplus V_{n_{k}}^{N_{k}}$ for any k-tuple $\left(N_{1}, N_{2}, \ldots, N_{k}\right)$ define the nullcone of \tilde{V}.
Remark 4. One can also include the case $n_{1}=1$ by either assuming that $N_{1}=1$ or by adding the invariants $[i, j]$ of $V_{1}^{N_{1}}$ to the set of polarizations. (Recall that $[i, j]\left(\ell_{1}, \ldots, \ell_{N}\right):=\left[\ell_{i}, \ell_{j}\right]:=\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}$ where $\ell_{i}=\alpha_{i} x+\beta_{i} y \in V_{1}$.) Since the covariants $\mathcal{O}(V)^{U}$ can be identified with the invariants $\mathcal{O}\left(V \oplus V_{1}\right)$ the theorem above has some interesting consequences for covariants.
Example 7 (Covariants of V_{3}^{N}). The covariants of V_{3}^{N} can be identified with the invariants of $V_{3}^{N} \oplus V_{1}$. The case $N=1$ is well-known and classical: $\mathcal{O}\left(V_{3} \oplus V_{1}\right)^{\mathrm{SL}_{2}}=$ $\mathbb{C}\left[h, f_{1,3}, f_{2,2}, f_{3,3}\right]$, where h is the discriminant of V_{3} and the $f_{i, j}$ are bihomogenous invariants of degree (i, j) corresponding to $V_{3} \subset \mathcal{O}\left(V_{3}\right)_{1}, V_{2} \subset \mathcal{O}\left(V_{3}\right)_{2}$ and $V_{1} \subset$ $\mathcal{O}\left(V_{3}\right)_{3}$. Recall that an embedding $V_{n} \subset \mathcal{O}\left(V_{3}\right)_{d}$ defines a covariant $\varphi: V_{3} \rightarrow V_{n}$ of degree d and thus an invariant $f_{d, n}:(f, \ell) \mapsto\left[\varphi(f), \ell^{n}\right]$ where the bracket $[\cdot, \cdot]$ denotes the invariant bilinear form on $V_{n} \times V_{n}$.

It is easy to see that $h, f_{1,3}, f_{2,2}$ form a system of parameters, i.e. define the nullcone of $V_{3} \oplus V_{1}$. Therefore, their polarizations (in the variables of V_{3}) define the nullcone of $V_{3}^{N} \oplus V_{1}$ for any $N \geq 1$. Therefore, we always have a system of parameters in degree 4 and thus can easily calculate the Hilbert series for small N, e.g.:

$$
\operatorname{Hilb}_{V_{3}^{2} \oplus V_{1}}=\frac{h_{2}}{\left(1-t^{2}\right)\left(1-t^{4}\right)^{6}} \quad \text { and } \quad \operatorname{Hilb}_{V_{3}^{3} \oplus V_{1}}=\frac{h_{3}}{\left(1-t^{2}\right)^{3}\left(1-t^{4}\right)^{8}}
$$

where

$$
h_{2}:=1+6 t^{4}+13 t^{6}+12 t^{8}+13 t^{10}+6 t^{12}+t^{16}
$$

and

$$
\begin{aligned}
h_{3}:=1+24 t^{4}+62 t^{6}+177 t^{8}+300 t^{10}+320 t^{12}+ & 300 t^{14}+ \\
& 177 t^{16}+62 t^{18}+24 t^{20}+t^{24}
\end{aligned}
$$

For the calculation we use the fact (due to Knop [Kn89]) that the degree of the Hilbert series is $\leq-\operatorname{dim} V$ and that the numerator is palindromic since the invariant ring is Gorenstein. The Theorem of Weyl implies that the covariants for V_{3}^{N} are obtained from those of V_{3}^{3} by polarization. Since the representation is symplectic they are even obtained from V_{3}^{2} by polarization (see Schwarz [Sch87]).

5. GEnerators and system of parameters for the invariants of 3-QUBITS

Lemma 4. Consider the polynomial ring $\mathbb{C}\left[a_{11}, a_{22}, a_{33}, a_{12}, a_{13}, a_{23}\right]$ in the coefficients of a quadratic form in 3 variables and put

$$
d:=\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

Then the elements $\left\{a_{11}-a_{22}, a_{22}-a_{33}, a_{12}, a_{13}, a_{23}, d\right\}$ form a homogeneous system of parameters.

Proof. The proof is easy: One simply shows that the zero set of these functions is the origin.

Let us now consider N copies of the standard representation \mathbb{C}^{n} of the complex orthogonal group $\mathrm{O}_{n}=\mathrm{O}_{n}(\mathbb{C}): W:=\mathbb{C}^{N} \otimes \mathbb{C}^{n}$. The first fundamental theorems for O_{n} and SO_{n} tells us that the invariants under O_{n} are generated by the quadratic invariants $\sum_{\nu=1}^{n} x_{i \nu} x_{j \nu}(1 \leq i \leq j \leq N)$ and that for SO_{n} we have to add the $n \times n$ minors of the matrix $\left(x_{i \nu}\right)$. In terms of representation theory this means the following. We have (by CaUchy's formula)

$$
S^{2} \mathbb{C}^{N} \otimes \mathbb{C} \subset S^{2}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{n}\right) \quad \text { and } \quad \Lambda^{n} \mathbb{C}^{N} \otimes \mathbb{C} \subset S^{n}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{n}\right)
$$

where \mathbb{C} denotes the trivial representation of SO_{n}, and these subspaces form a generating system for $S\left(\mathbb{C}^{N} \otimes \mathbb{C}^{n}\right)^{\mathrm{SO}_{n}}$.

As before we denote by V_{m} the irreducible representation of SL_{2} of dimension $m+1$. We apply the above first to the the case of three copies of the irreducible 3dimensional representation V_{2} of $\mathrm{SL}_{2}: W=\mathbb{C}^{3} \otimes V_{2}$. Then the subspaces $S^{2} \mathbb{C}^{3} \otimes V_{0}$ and $\bigwedge^{3} \mathbb{C}^{3} \otimes V_{0}$ form a minimal generating system for the SL_{2}-invariants. Thus we get 6 generators in degree 2 and one generator in degree 3 .

Now we consider the space $\mathbb{C}^{3} \otimes V_{2}$ as a representation of $\mathrm{SO}_{3} \times \mathrm{SL}_{2}$ and denote the 6 quadratic generators by $a_{11}, a_{22}, a_{33}, a_{12}, a_{13}, a_{23}$ with the obvious meaning. Then the cubic generator q satisfies the relation

$$
q^{2}=\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

Moreover, the space $S^{2} \mathbb{C}^{3}$ decomposes under SO_{3} into the direct sum of two irreducible representations

$$
S^{2} \mathbb{C}^{3}=S_{0}^{2} \mathbb{C}^{3} \oplus \mathbb{C}
$$

where \mathbb{C} is the trivial representation. In terms of coordinates, \mathbb{C} is spanned by $a_{11}+a_{22}+a_{33}$ and $S_{0}^{2} \mathbb{C}^{3}$ by $\left\{a_{11}-a_{22}, a_{22}-a_{33}, a_{12}, a_{13}, a_{23}\right\}$. With Lemma 6 above we therefore have the following result.

Proposition 6. Consider the representation $W:=\mathbb{C}^{3} \otimes V_{2}$ of $\mathrm{SO}_{3} \times \mathrm{SL}_{2}$. Then the 5-dimensional subspace $S_{0}^{2}\left(\mathbb{C}^{3}\right) \otimes V_{0} \subset S^{2}(W)$ together with the 1-dimensional subspace $\bigwedge^{3} \mathbb{C}^{3} \otimes V_{0} \subset S^{3}(W)$ form a homogeneous system of parameters for the invariants $S(W)^{\mathrm{SL}_{2}}$.

We want to apply this to the invariants of two copies of 3 -qubits, i.e. to the representation

$$
V:=V_{1} \otimes V_{1} \otimes V_{1} \oplus V_{1} \otimes V_{1} \otimes V_{1}=\mathbb{C}^{2} \otimes V_{1} \otimes V_{1} \otimes V_{1}
$$

of $G:=\mathrm{SL}_{2} \times \mathrm{SL}_{2} \times \mathrm{SL}_{2}$. We consider this as a representation of $\mathrm{SL}_{2} \times \mathrm{SO}_{4}$:

$$
V=\mathbb{C}^{2} \otimes V_{1} \otimes \mathbb{C}^{4}
$$

where \mathbb{C}^{4} is the standard representation of SO_{4}. As a representation of SO_{4} this is the direct sum of 4 copies of the standard representation. Therefore, the SO_{4} invariants are generated by $S^{2}\left(\mathbb{C}^{2} \otimes V_{1}\right) \otimes V_{0} \subset S^{2}(V)$ and $\bigwedge^{4}\left(\mathbb{C}^{2} \otimes V_{1}\right) \otimes V_{0} \subset S^{4}(V)$,
i.e. we have ten generators in degree 2 and one generator q_{4} in degree 4 . Moreover, the induced morphism

$$
\pi_{1}: V \rightarrow S^{2}\left(\mathbb{C}^{2} \otimes V_{1}\right)
$$

is surjective (and homogeneous of degree 2), and π_{1} is the quotient map under O_{4}. The generator q_{4} is invariant under the full group G. The 10-dimensional representation $S^{2}\left(\mathbb{C}^{2} \otimes V_{1}\right)$ decomposes under SL_{2} in the form

$$
S^{2}\left(\mathbb{C}^{2} \otimes V_{1}\right)=S^{2}\left(\mathbb{C}^{2}\right) \otimes V_{2} \oplus \bigwedge^{2} \mathbb{C}^{2} \otimes V_{0}=\mathbb{C}^{3} \otimes V_{2} \oplus \mathbb{C} \otimes V_{0}
$$

Thus there is G-invariant q_{2} in degree 2 given by the second summand. We have seen above that the SL_{2}-invariants of $\mathbb{C}^{3} \otimes V_{2}$ are generated by six invariants in degree 2 and one in degree 3 , represented by the subspaces $S^{2}\left(\mathbb{C}^{3}\right) \otimes V_{0} \subset S^{2}\left(\mathbb{C}^{3} \otimes V_{2}\right)$ and $\bigwedge^{3} \mathbb{C}^{3} \otimes V_{0} \subset S^{3}\left(\mathbb{C}^{3} \otimes V_{2}\right)$. This proves the first part of the following theorem. The second part is an immediate consequence of Proposition 6 above.

Theorem 6. The $\mathrm{SL}_{2} \times \mathrm{SL}_{2} \times \mathrm{SL}_{2}$-invariants of $\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)^{\oplus 2}$ are generated by one invariant q_{2} in degree 2, seven invariants $p_{1}, \ldots, p_{6}, q_{4}$ in degree 4 and one invariant q_{6} in degree 6 . A homogeneous system of parameters for the invariant ring is given by $q_{2}, p_{1}, \ldots, p_{5}, q_{6}$ where p_{1}, \ldots, p_{5} span the subspace $S_{0}^{2}\left(\mathbb{C}^{3}\right) \otimes V_{0}$ stable under SO_{3} acting on \mathbb{C}^{3}.

Remark 5. The generating invariants have the following bi-degrees: $\operatorname{deg} q_{2}=(1,1)$, $\operatorname{deg} q_{4}=(2,2), \operatorname{deg} q_{6}=(3,3)$, and the bi-degrees of the p_{i} 's are $(4,0),(3,1),(2,2)$, $(2,2),(1,3),(0,4)$.

Remark 6. The invariants of $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ under $G=\mathrm{SL}_{2} \times \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ are generated by one invariant p of degree 4 . It is given by the consecutive quotient maps

$$
p: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}=\mathbb{C}^{2} \otimes \mathbb{C}^{4} \xrightarrow{/ \mathrm{SO}_{4}} S^{2} \mathbb{C}^{2}=V_{2} \xrightarrow{/ \mathrm{SL}_{2}} \mathbb{C}
$$

The nullcone $p^{-1}(0)$ is irreducible of dimension 7 and contains a dense orbit, namely the orbit of $v_{0}:=e_{1} \otimes e_{1} \otimes e_{0}+e_{1} \otimes e_{0} \otimes e_{1}+e_{0} \otimes e_{1} \otimes e_{1}$. (In fact, it easy to see, by Hilbert's criterion, that v_{0} is in the nullcone; moreover, the annihilator of v_{0} in Lie G has dimension 2, hence $G v_{0}$ is an orbit of dimension 7.) Therefore, all fibres of p are irreducible (of dimension 7) and contain a dense orbit. More precisely, we have the following result. (We use the notation $e_{i j k}:=e_{i} \otimes e_{j} \otimes e_{k}$.)

Proposition 7. The nullcone of $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ contains six orbits, the origin $\{0\}$, the orbit $G e_{111}$ of the highest weight vector which is of dimension 4, the dense orbit $G\left(e_{110}+e_{101}+e_{011}\right)$ of dimension 7, and the three orbits of the elements $e_{100}+e_{010}$, $e_{010}+e_{001}, e_{001}+e_{100}$ which are of dimension 5 and which are permuted under the symmetric group \mathcal{S}_{3} permuting the three factors in the tensor product.

Proof. The weight vector $e_{i j k}$ has weight

$$
\varepsilon_{i j k}:=\left((-1)^{i+1},(-1)^{j+1},(-1)^{k+1}\right) \in \mathbb{Z}^{3}=X\left(\mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*}\right)
$$

and so the set X_{V} of weights of $V:=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ consists of the vertices of a cube in \mathbb{R}^{3} centered in the origin. There are four maximal unstable subset of X_{V} in the sense of [KrW06, Definition 1.1], up to the action of the Weyl group, namely the set of vertices of the three faces of the cube containing the highest weight ε_{111},
and the set $\left\{\varepsilon_{111}, \varepsilon_{011}, \varepsilon_{101}, \varepsilon_{110}\right\}$. The corresponding maximal unstable subspaces of V are (see [KrW06, Definition 1.2]):

$$
\begin{aligned}
W_{1} & :=\left\langle e_{111}, e_{110}, e_{101}, e_{100}\right\rangle \\
W_{2} & :=\left\langle e_{111}, e_{110}, e_{011}, e_{010}\right\rangle \\
W_{3} & :=\left\langle e_{111}, e_{011}, e_{101}, e_{001}\right\rangle \\
U & :=\left\langle e_{111}, e_{011}, e_{101}, e_{110}\right\rangle .
\end{aligned}
$$

It follows that the nullcone is given as a union

$$
\mathcal{N}_{V}=G U \cup G W_{1} \cup G W_{2} \cup G W_{3} .
$$

The subspace U is stabilized by $B \times B \times B$ whereas $W_{1}=e_{1} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ is stable under $B \times \mathrm{SL}_{2} \times \mathrm{SL}_{2}$, and similarly for W_{2} and W_{3}. Since the spaces W_{i} are not stable under G we get $\operatorname{dim} G W_{i}=\operatorname{dim} W_{i}+1=5$, and so $G U=\mathcal{N}_{V}$.

The group $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ has three orbits in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$, the dense orbit of $e_{1} \otimes e_{0}+e_{0} \otimes e_{1}$, the highest weight orbit of $e_{1} \otimes e_{1}$, and $\{0\}$. This shows that $\overline{G\left(e_{110}+e_{101}\right)}=G W_{1}$ and that $G W_{1} \backslash G\left(e_{110}+e_{101}\right) \subset \overline{G e_{111}}$, and similarly for W_{2} and W_{3}. One also sees that the elements $e_{110}+e_{101}, e_{110}+e_{011}$, and $e_{101}+e_{011}$ represent three different orbits of dimension 5 , all containing the highest weight orbit in their closure. In fact, $G W_{1}=\left\{g e_{1} \otimes v \mid g \in G\right.$ and $\left.v \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}\right\}$, and so $g e_{1} \otimes v$ is not in W_{2} except if v is a multiple of $g e_{1} \otimes g e_{1}$. In particular, $G W_{1} \cap G W_{2} \cap G W_{3}=\overline{G e_{111}}$.

Finally, it is easy to see that $(B \otimes B \otimes B) v_{0}=\mathbb{C}^{*} e_{110} \times \mathbb{C}^{*} e_{101} \times \mathbb{C}^{*} e_{011} \times \mathbb{C} e_{111}$. Hence, $\overline{G v_{0}}=G U=\mathcal{N}_{V}$ and $\mathcal{N}_{V} \backslash G v_{0} \subset G W_{1} \cup G W_{2} \cup G W_{3}$.

Proposition 8. The invariants in degree 4 of any number of copies of Q_{3} define the nullcone. In particular, for any $N \geq 1$ there is a system of parameters of $Q_{3}^{\oplus N}$ in degree 4.
Proof. We can identify $\mathbb{C}^{N} \otimes Q_{3}$, as a representation of $\mathrm{SL}_{2}{ }^{3}$, with $\mathbb{C}^{N} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{4}$, as a representation of $\mathrm{SL}_{2} \times \mathrm{SO}_{4}$. The quotient of $\mathbb{C}^{N} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{4}$ by O_{4} is given by

$$
\pi: \mathbb{C}^{N} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{4} \rightarrow S^{2}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{2}\right)
$$

where the image of π is the closed cone of symmetric matrices of rank ≤ 4 (First Fundamental Theorem for the orthogonal group, see [GoW98, Theorem 4.2.2] or [Pro07, 11.2.1]). This means that the O_{4}-invariants are generated by the obvious quadratic invariants. Moreover, the morphism π is SL_{2}-equivariant.

As a representation of SL_{2} we have

$$
S^{2}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{2}\right)=S^{2}\left(\mathbb{C}^{N}\right) \otimes V_{2} \oplus \bigwedge^{2} \mathbb{C}^{N} \otimes \mathbb{C}
$$

where V_{2} is the 3-dimensional irreducible representation of SL_{2} corresponding to the standard representation of SO_{3}, and \mathbb{C} denotes the trivial representation. Again, consider this as a representation of O_{3}. Then the O_{3}-invariants are generated by the quadratic (and the linear) invariants. Summing up we see that the invariant ring

$$
\left(\mathcal{O}\left(\mathbb{C}^{n} \otimes Q_{3}\right)^{\mathrm{O}_{4}}\right)^{\mathrm{O}_{3}}
$$

is generated by the elements of degree 2 and 4 . By construction,

$$
\left(\mathcal{O}\left(\mathbb{C}^{n} \otimes Q_{3}\right)^{\mathrm{O}_{4}}\right)^{\mathrm{O}_{3}} \subset\left(\mathcal{O}\left(\mathbb{C}^{n} \otimes Q_{3}\right)^{\mathrm{SL}_{2} \times \mathrm{SL}_{2}}\right)^{\mathrm{SL}_{2}}=\mathcal{O}\left(\mathbb{C}^{n} \otimes Q_{3}\right)^{\mathrm{SL}_{2} \times \mathrm{SL}_{2} \times \mathrm{SL}_{2}}
$$

and the latter is a finite module over the former. Therefore, both quotients have the same nullcone and so the nullcone is defined by invariants in degree 2 and 4 .

Remark 7. The representation $Q_{3} \oplus Q_{3}$ has one invariant of degree 2 and eight invariants of degree 4. Since the dimension of the quotient is 7 it follows that there is a system of parameters for the invariant ring consisting of seven invariants of degree 4. A priori it is not clear that there is also a system of parameters consisting of one invariant of degree 2 and six invariants of degree 4 as suggested by the Hilbert series which has the form

$$
\operatorname{Hilb}_{Q_{3} \oplus Q_{3}}=\frac{1+t^{4}+t^{6}+t^{10}}{\left(1-t^{2}\right)\left(1-t^{4}\right)^{6}}
$$

However, the analysis above shows that in case of 2 copies of Q_{3} we obtain the following composition of quotient maps

$$
\pi: Q_{3} \oplus Q_{3} \xrightarrow{\pi_{1}} S^{2} \mathbb{C}^{2} \otimes V_{2} \oplus \mathbb{C} \xrightarrow{\pi_{2}} S^{2} S^{2} \mathbb{C}^{2} \oplus \mathbb{C}
$$

where π_{1} is the quotient by O_{4} and π_{2} the quotient by O_{3}. Since both morphisms π_{1} and π_{2} are surjective in this case it follows that the zero fiber \mathcal{N} of π is defined by the quadratic invariant and six invariants of degree 4 . As we remarked above the (reduced) zero fiber of π is the nullcone of $Q_{3} \oplus Q_{3}$ with respect to $\mathrm{SL}_{2} \times \mathrm{SL}_{2} \times \mathrm{SL}_{2}$, hence these seven invariants form a homogeneous system of parameters for the ring of invariants.

References

[Bü06] Bürgin, M.: Nullforms, Polarization, and Tensor Powers Thesis, University of Basel, 2006.
[DKK06] Draisma, J.; Kraft, H.; Kuttler, J.: Nilpotent subspaces of maximal dimension in semisimple Lie algebras. Compositio Math. 142 (2006) 464-476.
[Ge58] Gerstenhaber, M.: On nilalgebras and linear varieties of nilpotent matrices, I. Amer. J. Math. 80 (1958) 614-622.
[GoW98] Goodman, R.; Wallach, N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge, 1998.
[Kn89] Knop, F.: Der kanonische Modul eines Invariantenringes. J. Algebra 127 (1989) 40-54.
[Kr85] Kraft, H.: Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, vol. D1, Vieweg Verlag, Braunschweig/Wiesbaden, 1985. (2., durchgesehene Auflage)
[KrW06] Kraft, H. and Wallach, N.R.: On the nullcone of representations of reductive groups. Pacific J. Math. 224 (2006), 119-140.
[MeW02] Meyer, D. A. and Wallach, N.: Invariants for multiple qubits: the case of 3 qubits. Mathematics of quantum computation, 77-97, Comput. Math. Ser., Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[Pro07] Procesi, C.: Lie Groups: An Approach through Invariants and Representations. Springer Universitext, Springer Verlag, New York, 2007.
[Sch87] Schwarz, G. W.: On classical invariant theory and binary cubics. Ann. Inst. Fourier 37 (1987) 191-216.
[Sch07] Schwarz, G. W.: When do polarizations generate? Transformation Groups (2007), to appear.
[Te86] Teranishi, Y.: The ring of invariants of matrices. Nagoya Math. J. 104 (1986) 149-161.
[WaW00] Wallach, N. R.; Willenbring, J.: On some q-analogs of a theorem of Kostant-Rallis. Canadian J. Math. 52 (2000) 438-448.

Hanspeter Kraft

Mathematisches Institut der Universität Basel,
Rheinsprung 21, CH-4051 Basel, Switzerland

Nolan R. Wallach
Department of Mathematics
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093-0112, USA
E-mail address: Hanspeter.Kraft@unibas.ch, nwallach@uscd.edu

[^0]: Date: October 15, 2007.
 The first author is partially supported by the Swiss National Science Foundation (Schweizerischer Nationalfonds), the second by an NSF summer grant.

