894 research outputs found

    Diameter dependence of ferromagnetic spin moment in Au nanocrystals

    Get PDF
    Au nanoparticles exhibit ferromagnetic spin polarization and show diameter dependence in magnetization. The magnetic moment per Au atom in the particle attains its maximum value at a diameter of about 3 nanometer (nm) in the Magnetization-Diameter curve. Because Au metal is a typical diamagnetic material, its ferromagnetic polarization mechanism is thought to be quite different from the ferromagnetism observed in transition metals. The size effect strongly suggests the existence of some spin correlation effect at the nanoscale. The so-called ``Fermi hole effect'' is the most probable one given in the free electron gas system. Ferromagnetism in Au nanoparticles is discussed using this model.Comment: 5 pages, 6 figures, to appear in Phys. Rev.

    Multiple-valued logic-in-memory VLSI based on a floating-gate-MOS pass-transistor network

    Get PDF
    科研費報告書収録論文(課題番号:09558027・基盤研究(B)(2)・H9~H12/研究代表者:羽生, 貴弘/1トランジスタセル多値連想メモリの試作とその応用

    Direct evidence for ferromagnetic spin polarization in gold nanoparticles

    Get PDF
    We report the first direct observation of ferromagnetic spin polarization of Au nanoparticles with a mean diameter of 1.9 nm using X-ray magnetic circular dichroism (XMCD). Owing to the element selectivity of XMCD, only the gold magnetization is explored. Magnetization of gold atoms estimated by XMCD shows a good agreement with the results obtained by conventional magnetometry. This result is evidence of intrinsic spin polarization in nano-sized gold.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Breakdown of the Two-Step Model in K-Shell Photoemission and Subsequent Decay Probed by the Molecular-Frame Photoelectron Angular Distributions of CO_2

    Get PDF
    We report results of measurements and of Hartree-Fock level calculations of molecular-frame photoelectron angular distributions (MFPADs) for C 1s photoemission from CO2. The agreement between the measured and calculated MFPADs is on average reasonable. The measured MFPADs display a weak but definite asymmetry with respect to the O+ and CO+ fragment ions at certain energies, providing evidence for an overlap of gerade and ungerade final ionic states giving rise to a partial breakdown of the two-step model of core-level photoionization and its subsequent Auger decay

    Coulomb and nuclear breakup of a halo nucleus 11Be

    Get PDF
    Breakup reactions of the one-neutron halo nucleus 11Be on Pb and C targets at about 70 MeV/u have been investigated by measuring the momentum vectors of the incident 11Be, outgoing 10Be, and neutron in coincidence. The relative energy spectra as well as the angular distributions of the 10Be+n center of mass have been extracted for both targets. For the breakup on Pb target, the selection of forward scattering angles is found to be effective to extract almost purely the first-order E1 Coulomb breakup component, and to exclude the nuclear contribution and higher-order Coulomb breakup components. This angle-selected energy spectrum is thus used to deduce the spectroscopic factor for the 10Be(0+) 2s_1/2 configuration in 11Be which is found to be 0.72+-0.04 with B(E1) up to Ex=4 MeV of 1.05+-0.06 e2fm2. The energy weighted E1 strength up to Ex=4 MeV explains 70+-10% of the cluster sum rule, consistent with the obtained spectroscopic factor. The non-energy weighted sum rule is used to extract the root mean square distance of the halo neutron to be 5.77(16) fm, consistent with previously known values. In the breakup with C target, we have observed the excitations to the known unbound states in 11Be at Ex=1.78 MeV and 3.41 MeV. Angular distributions for these states show the diffraction pattern characteristic of L=2 transitions, resulting in J^pi =(3/2,5/2)+ assignment for these states. We finally find that even for the C target the E1 Coulomb direct breakup mechanism becomes dominant at very forward angles.Comment: 14 pages, 7 figures, accepted for publication on Physical Review
    corecore