22 research outputs found

    Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data

    Get PDF
    We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination

    Detection of B-mode polarization at degree angular scales by BICEP2

    Get PDF
    We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∌80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300  ΌKCMB√s . BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 305σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∌(5–10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r=0.20 +0.07 −0.05, with r=0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets

    Cross-correlation of POLARBEAR CMB Polarization Lensing with High-zz Sub-mm Herschel-ATLAS galaxies

    No full text
    We report a 4.8σ\sigma measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the POLARBEAR experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind. We infer a best-fit galaxy bias of b=5.76±1.25b = 5.76 \pm 1.25, corresponding to a host halo mass of log⁥10(Mh/M⊙)=13.5−0.3+0.2\log_{10}(M_h/M_\odot) =13.5^{+0.2}_{-0.3} at an effective redshift of z∌2z \sim 2 from the cross-correlation power spectrum. Residual uncertainties in the redshift distribution of the sub-mm galaxies are subdominant with respect to the statistical precision. We perform a suite of systematic tests, finding that instrumental and astrophysical contaminations are small compared to the statistical error. This cross-correlation measurement only relies on CMB polarization information that, differently from CMB temperature maps, is less contaminated by galactic and extra-galactic foregrounds, providing a clearer view of the projected matter distribution. This result demonstrates the feasibility and robustness of this approach for future high-sensitivity CMB polarization experiments

    A Measurement of the CMB EE-mode Angular Power Spectrum at Subdegree Scales from670 Square Degrees of POLARBEAR Data

    Get PDF
    International audienceWe report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from 2014 July to 2016 December with the Polarbear experiment. We reach an effective polarization map noise level of - across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range , tracing the third to seventh acoustic peaks with high sensitivity. The statistical uncertainty on E-mode bandpowers is ∌2.3 at , with a systematic uncertainty of 0.5 . The data are consistent with the standard ΛCDM cosmological model with a probability-to-exceed of 0.38. We combine recent CMB E-mode measurements and make inferences about cosmological parameters in ΛCDM as well as in extensions to ΛCDM. Adding the ground-based CMB polarization measurements to the Planck data set reduces the uncertainty on the Hubble constant by a factor of 1.2 to . When allowing the number of relativistic species () to vary, we find , which is in good agreement with the standard value of 3.046. Instead allowing the primordial helium abundance () to vary, the data favor . This is very close to the expectation of 0.2467 from big bang nucleosynthesis. When varying both and , we find and

    A measurement of the degree-scale CMB B-mode angular power spectrum with POLARBEAR

    Get PDF
    We present a measurement of the B-mode polarization power spectrum of the cosmic microwave background (CMB) using data taken from 2014 July to 2016 December with the Polarbear experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of NETarray=23ÎŒ K√s on a 670 square degree patch of sky centered at (R.A., decl.) = (+0h12m0s, -59°18â€Č). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve 32 ÎŒK arcmin effective polarization map noise with a knee in sensitivity of ℓ = 90, where the inflationary gravitational-wave signal is expected to peak. The measured B-mode power spectrum is consistent with a ΛCDM lensing and single dust component foreground model over a range of multipoles 50 ≀ ℓ ≀ 600. The data disfavor zero CℓBB at 2.2σ using this ℓ range of Polarbear data alone. We cross-correlate our data with Planck full mission 143, 217, and 353 GHz frequency maps and find the low-ℓ B-mode power in the combined data set to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio r < 0.90 at the 95% confidence level after marginalizing over foregrounds

    BICEP2 / Keck Array XI: Beam Characterization and Temperature-to-Polarization Leakage in the BK15 Dataset

    Get PDF
    International audiencePrecision measurements of cosmic microwave background (CMB) polarization require extreme control of instrumental systematics. In a companion paper we have presented cosmological constraints from observations with the BICEP2 and Keck Array experiments up to and including the 2015 observing season (BK15), resulting in the deepest CMB polarization maps to date and a statistical sensitivity to the tensor-to-scalar ratio of σ(r)=0.020\sigma(r) = 0.020. In this work we characterize the beams and constrain potential systematic contamination from main beam shape mismatch at the three BK15 frequencies (95, 150, and 220 GHz). Far-field maps of 7,360 distinct beam patterns taken from 2010-2015 are used to measure differential beam parameters and predict the contribution of temperature-to-polarization leakage to the BK15 B-mode maps. In the multifrequency, multicomponent likelihood analysis that uses BK15, Planck, and WMAP maps to separate sky components, we find that adding this predicted leakage to simulations induces a bias of Δr=0.0027±0.0019\Delta r = 0.0027 \pm 0.0019. Future results using higher-quality beam maps and improved techniques to detect such leakage in CMB data will substantially reduce this uncertainty, enabling the levels of systematics control needed for BICEP Array and other experiments that plan to definitively probe large-field inflation

    BICEP array cryostat and mount design

    No full text
    International audienceBicep Array is a cosmic microwave background (CMB) polarization experiment that will begin observing at the South Pole in early 2019. This experiment replaces the five Bicep2 style receivers that compose the Keck Array with four larger Bicep3 style receivers observing at six frequencies from 30 to 270GHz. The 95GHz and 150GHz receivers will continue to push the already deep Bicep/Keck CMB maps while the 30/40GHz and 220/270GHz receivers will constrain the synchrotron and galactic dust foregrounds respectively. Here we report on the design and performance of the Bicep Array instruments focusing on the mount and cryostat systems

    2017 upgrade and performance of BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization

    No full text
    International audienceBICEP3 is a 520mm aperture on-axis refracting telescope observing the polarization of the cosmic microwave background (CMB) at 95GHz in search of the B-mode signal originating from in ationary gravitational waves. BICEP3's focal plane is populated with modularized tiles of antenna-coupled transition edge sensor (TES) bolometers. BICEP3 was deployed to the South Pole during 2014-15 austral summer and has been operational since. During the 2016-17 austral summer, we implemented changes to optical elements that lead to better noise performance. We discuss this upgrade and show the performance of BICEP3 at its full mapping speed from the 2017 and 2018 observing seasons. BICEP3 achieves an order-of-magnitude improvement in mapping speed compared to a Keck 95GHz receiver. We demonstrate 6.6&mu;K&radic;s noise performance of the BICEP3 receiver

    Measurements of Degree-Scale B-mode Polarization with the BICEP/KeckKeck Experiments at South Pole

    No full text
    International audienceThe BICEP and Keck Array experiments are a suite of small-aperture refracting telescopes observing the microwave sky from the South Pole. They target the degree-scale B-mode polarization signal imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves. Such a measurement would shed light on the physics of the very early universe. While BICEP2 observed for the first time a B-mode signal at 150 GHz, higher frequencies from the Planck satellite showed that it could be entirely due to the polarized emission from Galactic dust, though uncertainty remained high. Keck Array has been observing the same region of the sky for several years, with an increased detector count, producing the deepest polarized CMB maps to date. New detectors at 95 GHz were installed in 2014, and at 220 GHz in 2015. These observations enable a better constraint of galactic foreground emissions, as presented here. In 2015, BICEP2 was replaced by BICEP3, a 10 times higher throughput telescope observing at 95 GHz, while Keck Array is now focusing on higher frequencies. In the near future, BICEP Array will replace Keck Array, and will allow unprecedented sensitivity to the gravitational wave signal. High resolution observations from the South Pole Telescope (SPT) will also be used to remove the lensing contribution to B-modes
    corecore