118 research outputs found

    A Naval ‘Fracas’: From Boat Race to Bounce

    Get PDF

    Extrapolation of water and formaldehyde harmonic and anharmonic frequencies to the B3LYP/CBS limit using polarization consistent basis sets

    Get PDF
    The harmonic and anharmonic frequencies of fundamental vibrations in formaldehyde and water were successfully estimated using the B3LYP Kohn-Sham limit. The results obtained with polarization- and correlation-consistent basis sets were fitted with a two-parameter formula. Anharmonic corrections were obtained by a second order perturbation treatment (PT2). We compared the performance of the PT2 scheme on the two title molecules using SCF, MP2 and DFT (BLYP, B3LYP, PBE and B3PW91 functionals) methods combined with polarization consistent pc-n (n = 0, 1, 2, 3, 4) basis sets, Dunning’s basis sets (aug)-cc-pVXZ where X = D, T, Q, 5, 6 and Pople’s basis sets up to 6-311++G(3df,2pd). The influence of SCF convergence level and density grid size on the root mean square of harmonic and anharmonic frequency deviations from experimental values was tested. The wavenumber of formaldehyde CH2 anharmonic asymmetric stretching mode is very sensitive to grid size for large basis sets; this effect is not observed for harmonic modes. BLYP-calculated anharmonic frequencies consistently underestimate observed wavenumbers. On the basis of formaldehyde anharmonic frequencies, we show that increasing the Pople basis set size does not always lead to improved agreement between anharmonic frequencies and experimental values

    Experimental and theoretical spectroscopic studies on selected igepals

    Get PDF
    Several nonionic igepals characterized by the formula (CmH2m+1 )-C6H4-(OCH2CH2 ) n OH were investigated by high resolution NMR and IR spectroscopy. Gauge invariant atomic orbital density functional theory NMR calculations on model molecules in the gas phase additionally supported the assignment of experimental carbon signals. Different orientations of individual sub-units of an aliphatic chain relative to external magnetic field and trans-gαuche transitions were assumed to explain complex patterns of carbon spectra in the aliphatic region of igepals with linear alkyl chain

    Simple rules for complex near-glass-transition phenomena in medium-sized Schiff bases

    Full text link
    Glass-forming ability is one of the most desired properties of organic compounds dedicated to optoelectronic applications. Therefore, finding general structure–property relationships and other rules governing vitrification and related near-glass-transition phenomena is a burning issue for numerous compound families, such as Schiff bases. Hence, we employ differential scanning calorimetry, broadband dielectric spectroscopy, X-ray diffraction and quantum density functional theory calculations to investigate near-glass-transition phenomena, as well as ambient-and high-pressure molecular dynamics for two structurally related Schiff bases belonging to the family of glycine imino esters. Firstly, the surprising great stability of the supercooled liquid phase is shown for these compounds, also under high-pressure conditions. Secondly, atypical self-organization via bifurcated hydrogen bonds into lasting centrosymmetric dimers is proven. Finally, by comparing the obtained results with the previous report, some general rules that govern ambient-and high-pressure molecular dynamics and near-glass transition phenomena are derived for the family of glycine imino esters. Particularly, we derive a mathematical formula to predict and tune their glass transition temperature (Tg) and its pressure coefficient (dTg / dp). We also show that, surprisingly, despite the presence of intra-and intermolecular hydrogen bonds, van der Waals and dipole–dipole interactions are the main forces governing molecular dynamics and dielectric properties of glycine imino ester

    Discovery of AZD-2098 and AZD-1678, two potent and bioavailable CCR4 receptor antagonists

    Get PDF
    N-(5-Bromo-3-methoxypyrazin-2-yl)-5-chlorothiophene-2-sulfonamide 1 was identified as a hit in a CCR4 receptor antagonist high throughput screen (HTS) of a sub-set of the AstraZeneca compound bank. As a hit with a lead-like profile, it was an excellent starting point for a CCR4 receptor antagonist program and enabled the rapid progression through the Lead Identification and Lead Optimization phases resulting in the discovery of two bioavailable CCR4 receptor antagonist candidate drugs

    DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes

    Get PDF
    Structure and energy calculations of pristine and COOH-modified model single wall carbon nanotubes (SWCNTs) of different length were performed at B3LYP/6-31G* level of theory. From 1 to 9 COOH groups were added at the end of the nanotube. The differences in structure and energetics of partially and fully functionalized SWCNTs at one end of the nanotube are observed. Up to nine COOH groups could be added at one end of (9,0) zigzag SWCNT in case of full functionalization. However, for (5,5) armchair SWCNT, the full functionalization was impossible due to steric crowding and rim deformation. The dependence of substituent attachment energy on the number of substituents at the carbon nanotube rim was observed
    corecore