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Abstract A combined experimental and theoretical study

has been performed on 9-benzyl-3,6-diiodo-9H-carbazole.

Experimental X-ray (100.0 K) and room-temperature 13C

nuclear magnetic resonance (NMR) studies were supported

by advanced density functional theory calculations. The

non-relativistic structure optimization was performed and

the 13C nuclear magnetic shieldings were predicted at the

relativistic level of theory using the zeroth-order regular

approximation. The changes in the benzene and pyrrole

rings compared to the unsubstituted carbazole or the parent

molecules were discussed in terms of aromaticity changes

using the harmonic oscillator model of aromaticity and the

nucleus independent chemical shift indexes. Theoretical

relativistic calculations of chemical shifts of carbons C3

and C6, directly bonded to iodine atoms, produced a rea-

sonable agreement with experiment (initial deviation from

experiment of 41.57 dropped to 5.6 ppm). A good linear

correlation between experimental and theoretically pre-

dicted structural and NMR parameters was observed.

Graphical Abstract

Keywords 9-Benzyl-3,6-diiodo-9H-carbazole � X-ray

structure � 13C NMR spectra � ZORA � GIAO NMR

calculations � HOMA � NICS

Introduction

Carbazole and its derivatives have been of special interest

because of their unique photoconductive [1] and optical

properties [2]. Polymers containing carbazole moiety are

very promising new materials [3] and are widely used in

electronics and photonics [4–7]. Due to their interesting

properties, the chemistry of carbazole derivatives has been

studied at length [8–10]. One of the most common carba-

zole derivatives applied in electrophotographic [8] is poly

(N-vinylcarbazole). The 3,6- and 2,7-substituted carbazole
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derivatives are currently among the most widely studied

materials [11–15]. It is known that the presence of heavy

atoms (Cl and Br) decreases the relative quantum yield of

fluorescence and increases phosphorescence in the carba-

zole derivatives [16]. Bonesi [17] observed the same effect

in carbazole modified by Cl and Br at positions 3 and 3, 6

in a solid matrix. Finally, in a work of Safoula [18] an

increase in conductivity by molecular doping with iodine

was observed.

Experimental nuclear magnetic resonance (NMR) stud-

ies are widely used to characterize the geometrical and

electronic structure of isolated compounds, their solute–

solute and solute–solvent interactions in solution. Nowa-

days, the assignment of experimental spectra is often

supported by molecular modeling of the relevant NMR

parameters [19–21], as it is possible to predict satisfactory

chemical shifts for several different nuclei including 13C,
17O, 15N, and 19F [19, 22–25] using density functional

theory (DFT) calculations in combination with gauge

including atomic orbitals (GIAOs [26, 27]) and employing

the Becke three-parameter, Lee–Yang–Parr (B3LYP [27,

28]) or the hybrid half-and-half (BHandHLYP) exchange

correlation functionals [29]. Several NMR reports on the

simplest carbazoles are available [30–33]. However, sys-

tematic studies of the correlation between the molecular

structure of carbazoles and their NMR parameters are

lacking in the literature. The presence of a fairly heavy

nucleus (here iodine) in a molecule affects the NMR

properties of the neighboring light atom (close in space or

directly connected H, C, N atoms). This effect was

described by Pyykkö et al. [34] as the heavy-atom-on-light-

atom (HALA) effect. Ziegler, Autschbach and Arc-

isauskaite [35–41] reported on several relativistic calcula-

tions of NMR shieldings. In the work of Pecul et al. [42]

the importance of inclusion of the HALA effect on 13C

shielding constants in organomercury compounds and

halogen derivatives was discussed. They observed large

spin–orbit (SO) contributions to the HALA effects in the

halogen substituted compounds, which were well repro-

duced using zeroth-order regular approximation with SO

coupling (SO ZORA [43–45]) while these effects could not

be recovered using relativistic effective core potentials

(ECP [46]) on the halogen atoms. The study of Wodyński

and Pecul [47] described the influence of heavy atom on

the spin–spin coupling constants between two light nuclei

in organometallic compounds and halogen derivatives.

Another main factor related to the structural and elec-

tronic parameters of carbazoles and resulting in their dif-

ferent chemical properties is aromaticity. This chemical

property can be analyzed in several ways: via structurally

(harmonic oscillator model of aromaticity), electronically

(PDI—para-delocalization index), and magnetically

(NICS) based indices. The work of Poater et al. [48]

showed a clear divergence between the structural, elec-

tronic, and magnetic measures, so it is important to use

different aromaticity indexes to quantify this property. The

HOMA is a structurally based measure of aromaticity. It

was defined by Kruszewski and Krygowski [49, 50] as

HOMA ¼ 1 � a
n

Xn

i¼1
ðRopt � RiÞ2; ð1Þ

where n is the number of included bonds with bond lengths

Ri, and a is an empirical constant chosen in such a way that

HOMA = 0 for a model non aromatic system, and

HOMA = 1 for a system with all bonds equal to an optimal

value Ropt, assumed to be achieved for fully aromatic sys-

tems. The HOMA index has been found to be among the

most effective structural indicators of aromaticity. Another

way to show the aromaticity of a compound is the widely

employed nucleus independent chemical shift (NICS),

which was defined by Schleyer et al. [51] as the negative

value of the absolute shielding computed at the ring center,

or at some other interesting geometrical point of the system.

In common use, there are three variants: NICS(0) calculated

at the ring plane, NICS(1) calculated 1 Å above the plane,

and its zz-tensor component, NICS(1)zz, where the z-axis is

a normal to the plane. Rings with large negative NICS

values are considered to be aromatic and the more negative

the NICS value is the more aromatic the rings are.

Keeping in mind the above facts, we aimed to synthesize

and characterize a very specific carbazole derivative con-

taining two iodo-substituents. Its crystal structure and

NMR spectra are not yet described in the literature. This

paper presents thus the first report on crystal structure of

9-benzyl-3,6-diiodo-9H-carbazole and its 13C NMR

parameters in CDCl3 solution. We compare the experi-

mental low temperature X-ray (100.0 K) and room-tem-

perature NMR data with the DFT-calculated geometry of a

single molecule in the gas phase and its carbon shifts cal-

culated using standard non-relativistic and the relativistic

ZORA approach. The changes in aromaticity in 9-benzyl-

3,6-diiodo-9H-carbazole compared to free carbazole, ben-

zene, and pyrrole are also discussed via the structural

HOMA and magnetic NICS measures.

Experimental

Synthesis

3,6-Diiodo-9H-carbazole was obtained according to the

procedure described by Chuang et al. [52]. A solution

containing 16.7 g (0.1 mol) of 9H-carbazole, 21.6 g

(0.13 mol) of KI, 21.4 g (0.1 mol) of KIO3, 150 cm3 of

acetic acid, and 15 cm3 of water was heated for 48 h on a

water bath at 80 �C. After cooling to the room temperature,
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the precipitate was filtered off and washed with water,

saturated Na2CO3 solution, and methanol. The crude

product was crystallized from toluene. The yield was 25 g

of 3,6-diiodo-9H-carbazole (mp = 206–207 �C; Ed.

60 %).

The preparation of 9-benzyl-3,6-diiodo-9H-carbazole is

shown in Scheme 1.

To the intensively stirred solution of 2 g (4.77 mmol) of

3,6-diiodo-9H-carbazole in DMSO (30 ml) and tetrabu-

tylammonium iodide (0.2 g), 50 % aqueous KOH solution

(2 ml) was added and treated dropwise with 1.9 cm3

(16 mmol) of benzyl bromide in DMSO (10 ml). After two

hours the mixture was poured into water (100 ml). The

precipitate was dissolved in methylene chloride (30 ml)

and dried with anhydrous MgSO4. After evaporation of the

solvent, the residue (2.35 g) was crystallized from 20 cm3

of acetone. The yield was 2.2 g of 9-benzyl-3,6-diiodo-9H-

carbazole (mp = 175–176 �C; Ed. 90.5 %).

The crystals suitable for X-ray analysis of 9-benzyl-3,6-

diiodo-9H-carbazole were obtained by slow evaporation of

a saturated solution in chloroform.

Characterization

The single crystals of 9-benzyl-3,6-diiodo-9H-carbazole

were used for data collection at 100.0(1) K on a four-circle

Oxford Diffraction Xcalibur diffractometer equipped with

a two-dimensional area CCD detector with the graphite

monochromatised MoKa radiation (k = 0.71073 Å) and

the x-scan technique. Integration of the intensities and

correction for Lorenz and polarization effects were per-

formed using the CrysAlis RED software [53]. Crystal

structures were solved by direct methods and refined by a

full-matrix least-squares method on F2 using the SHELXL-

97 program [54]. Complete crystallographic details are

available as a supplementary material, and have been

deposited at the Cambridge Crystallographic Data Centre

(CCDC 990604) CCDC [55]. Any request to the CCDC for

this material should quote the full literature citation. The

room-temperature 13C NMR spectra in CDCl3 solution

were measured using Bruker Ultrashield 400 MHz NMR

spectrometer operating at 100.663 MHz for carbon nuclei

at ambient temperature and referenced to tetramethylsilane

(TMS) as internal standard.

Theoretical calculations

The geometric parameters of the isolated molecule were

obtained from an unconstrained optimization using the

B3LYP density functional [27, 28, 56] and a flexible

6-311++G(3df,2pd) basis set for C, N and H, and the

smaller 6-311G** basis set for iodine. The subsequent

vibrational analysis at the same level of theory showed no

imaginary frequencies indicating a true energy minimum.

These traditional non-relativistic calculations were carried

out using Gaussian 09 [57]. In the subsequent steps, the

non-relativistic geometry has been used both for typical

non-relativistic shielding calculations with the BHandH-

LYP half-and-half hybrid functional [29] and for the rela-

tivistic shielding calculations employing the zeroth-order

regular approximation Hamiltonian, including the SO

coupling term (SO ZORA) [58]. For consistence, all NMR

parameters were obtained with Amsterdam density func-

tional (ADF) program [59]. In this case, we employed the

DZP-, TZ2P-, and QZ4P STO-type basis sets. However, we

are aware that slightly better agreement between theoretical

and experimental NMR parameters could be obtained using

optimized structures at the same level of theory [60].

Theoretical chemical shifts (in ppm) were referenced to

benzene calculated at the same level of theory.

The HOMA and NICS indexes of aromaticity were

calculated in Gaussian 09 at the same level as the geometry

optimization.

Results and discussion

Crystal structure

The molecular structure of 9-benzyl-3,6-diiodo-9H-carba-

zole, the atomic numbering and ring labeling schemes are

presented in Fig. 1. The packing arrangement in the crystal

state is presented in Fig. 2. The molecular structure of

9-benzyl-3,6-diiodo-9H-carbazole consists of two units: the

carbazole unit containing atoms C1–C9A and the benzyl

unit containing atoms C10–C16.

The crystal data measured at 100 K and refinement

parameters are summarized in Table 1. The interatomic dis-

tances between iodine atoms in neighboring molecules are

given in Table 2 and selected bond lengths in Table 3. For

brevity, all experimental bond distances, bond angles, and

torsion angles within this compound are given in Tables S1,

S2, and S3 in the Supplementary Material. The value of

iodine–iodine distance coincides well with their van der Waals

radius proposed by Bondi (1.98 Å [61]) or Bastanov (2.1 Å

[62, 63]). Thus, the intermolecular I���I contact of 3.9558(3) Å

in the crystal structure of the title compound is about twice the

iodine van der Waals radius (see Table 2; Fig. 2).

N

I I

H
N

I I

CH2Ph

PhCH2Br

DMSO

508.93 g/mol419.00 g/mol

Scheme 1 Synthesis of 9-benzyl-3,6-diiodo-9H-carbazole
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It is well known that X-ray crystallography determines

accurately bond lengths between non-hydrogen atoms and

significantly underestimates C–H bonds [64]. This is also

apparent from Table S1. Therefore, we will limit the dis-

cussion of theoretical bond lengths to C–C, C–N, and C–I

only (see Table 3). All measured bond lengths and angles

are within normal ranges and fairly similar to distances

reported earlier for 9-benzyl-9H-carbazole X-ray structure

[65] (see Table 3). For better illustration of the quality of

predictions in the gas phase, we compared in Fig. 3 the

theoretical (non-relativistic) bond lengths with experi-

mental values obtained from X-ray measurement at low

temperature. A good agreement between theoretical and

experimental interatomic distances of 9-benzyl-3,6-diiodo-

9H-carbazole is apparent from a perfect linear correlation

between theory and experiment (y = 1.0415x–0.0535,

R2 = 0.9998), see Fig. 3).

The structural parameters obtained at the ZORA

(B3LYP/DZP/TZP level of theory) are of similar accuracy

to the results of the non-relativistic calculations, but they

are more time-consuming and we will not consider them in

future studies. The differences between theoretical and

experimental C–C and C–N bond lengths are in the range

of 0.013–0.001 Å. For the C–I bond the difference is

higher (in the range of 0.03–0.04 Å). All geometric data for

the studied carbazole derivative correlate also well with the

corresponding values found in the crystal structure of the

non-halogenated 9-benzyl-9H-carbazole [65] (see

Table 3).

Fig. 1 The molecular structure of 9-benzyl-3,6-diiodo-9H-carbazole,

showing the atom numbering scheme and the ring labeling.

Displacement ellipsoids are drawn at the 50 % probability level

Fig. 2 A packing diagram for

9-benzyl-3,6-diiodo-9H-

carbazole

1000 Struct Chem (2015) 26:997–1006
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13C NMR chemical shift

All experimental and calculated 13C chemical shifts of the

studied carbazole are collected in Table 4. It is apparent

that a very significant HALA effect of about -42 ppm is

only present for the C3 and C6 carbons directly bond to

iodine atoms.

Thus, the non-relativistic calculations of C3 and C6

chemical shifts lead to significant errors with a root mean

square deviation (RMS) of 12.85 ppm (for SO ZORA

calculations RMS = 3.34 ppm, see Table 4 and Fig. 4). It

is also apparent from Fig. 4 that the spin–orbit effects

played a major role in the calculations of chemical shifts of

carbon atoms directly attached to the halogen atom (here

iodine). The observed HALA effects are very close to

earlier results for halogen-substituted carbon atoms [15, 35,

42]. The other carbons, however, do practically not feel the

presence of the heavy halogen atoms.

HOMA and NICS indexes

The calculated HOMA and NICS values are gathered in

Table 5. HOMA indexes were calculated from Equation (1)

using a = 257.7 and Ropt (CC) = 1.388 Å [66] and bond

lengths from B3LYP/6-311++G(3df,2pd) optimized geom-

etries. For comparison, the corresponding HOMA values for

benzene and pyrrole, calculated at the same level of theory

are 0.998 and 0.772. The most aromatic ring within the

studied molecule is the benzyl unit (D): HOMA = 0.996.

The two benzene rings of the carbazole moiety (A and C) are

very similar (0.960 and 0.962). The aromaticity of these

rings is higher than in the parent unsubstituted carbazole

molecule (HOMA = 0.919). The least aromatic is the pyr-

rolic unit (ring B). In comparison to the parent pyrrole, the

five-membered ring B is significantly less aromatic (0.446)

than in the pyrrole molecule (0.772) or in the unsubstituted

carbazole (0.679).

Apart from HOMA, in Table 5 are also gathered the

results for the three variants of the NICS parameter,

Table 1 Crystallographic data for 9-benzyl-3,6-diiodo-9H-carbazole at 100 K

9-Benzyl-3,6-diiodo-9H-carbazole

Chemical formula C19 H13 I2 N

Mr 509.10

Cell setting, space group Monoclinic, P21/n

Temperature (K) 100.0 (1)

a, b, c (Å) 4.20240 (10), 18.8796 (3), 20.3862 (3)

b (o) 92.8680 (10)

V (Å3) 1615.41 (5)

Z 4

Dx (mg m-3) 2.093

Radiation type MoKa

l (mm-1) 3.889

Crystal size (mm) 0.30 9 0.28 9 0.26

No. of measured, independent, and observed reflections 9726/2806/2707

Rint 0.0146

(sinh/k)max (Å-1) 0.595

R [F2[ 2r(F2)], wR (F2), S 0.0186, 0.0405, 1.303

No. of reflections 2,806

No. of parameters 200

No. of restrains 0

H-atom treatment H atoms treated by a mixture of independent and considered refinement

Weighting scheme w = 1/[r2(Fo
2) + (0.0131P)2 + 1.9288P] where P = (Fo

2 + 2Fc
2)/3

Dqmax, Dqmin [e Å-3] 0.393, -0.379

Table 2 Experimental iodine–iodine distance (in Å) for 9-benzyl-

3,6-diiodo-9H-carbazole in the solid state at 100 K

D–I���A d(D–I) d(I���A)

C(3)–I(1)���I(1)i 2.103 3.9558(3)

Symmetry transformations used to generate equivalent atoms:

i = 1-x, 2-y, -z

Struct Chem (2015) 26:997–1006 1001
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collected for the studied carbazole derivative and for sev-

eral related compounds. For a direct reference of aroma-

ticity, we show the corresponding NICS values for

benzene, calculated at B3LYP/6-311++G(3df,2pd) level of

theory (-7.81, -10.21, and -29.88). The calculated NICS

indexes prove (confirm) the aromaticity of all rings in the

studied compound (see Table 5; Fig. 5).

Interestingly, examining the above results it is evident

that the most sensitive marker of aromaticity is NICS(1)zz.

Following the theory, that the more negative the NICS

value the more aromatic the ring is, it is apparent from

Fig. 5 that NICS(0) calculated for pyrrole, 9H-carbazole,

and 9-benzyl-3,6-diiodo-9H-carbazole predicts more aro-

matic rings than for benzene. The other two variants

NICS(1) and NICS(1)zz, however, show a different pattern.

Based on NICS(1)zz only the pyrrole ring is more aromatic

than benzene in complete contrast to the HOMA index.

Also the zz-component of NICS(1) indicates that the

addition of the benzyl ring and the two iodine atoms sig-

nificantly affects the aromaticity of carbazole. In compar-

ison to pristine carbazole, the aromaticity of the benzene

rings (A and C) of 9-benzyl-3,6-diiodo-9H-carbazole are

slightly different. This could reflect the effect of specific

twisting of benzyl ring to one of the benzene ring of car-

bazole moiety.

Fig. 3 Linear correlation between theoretical (predicted at B3LYP/6-

311++G(3df,2pd) level, and 6-311G** for iodine atom) and exper-

imental bond lengths for 9-benzyl-3,6-diiodo-9H-carbazole

Table 3 Comparison of

selected geometric data for

9-benzyl-3,6-diiodo-9H-

carbazole (Å) and 9-benzyl-9H-

carbazole (Å) obtained from

X-ray measurements at 100 K

and calculated via non-

relativistic (NR) B3LYP/6-

311++G(3df,2pd)/6-311G**

and relativistic ZORA/DZP/

TZP geometry optimizations

RMS values are marked using

bold font

Bond X-ray NR DFT ZORA DFT 9-Benzyl-9H-carbazole (X-ray) [65]

I(1)–C(3) 2.103(3) 2.135 2.135 –

I(2)–C(6) 2.097(3) 2.135 2.135 –

C(1)–C(2) 1.384(4) 1.391 1.387 1.383(5)

C(1)–C(9A) 1.391(4) 1.395 1.389 1.04(3)

C(2)–C(3) 1.401(4) 1.403 1.398 1.396(4)

C(3)–C(4) 1.376(4) 1.389 1.383 1.380(5)

C(4)–C(4A) 1.397(4) 1.398 1.394 1.395(4)

C(4A)–C(9A) 1.414(4) 1.417 1.411 1.410(4)

C(4A)–C(5A) 1.444(4) 1.447 1.443 1.442(4)

C(5A)–C(5) 1.397(4) 1.398 1.413 1.398(4)

C(5A)–C(8A) 1.413(4) 1.418 1.413 1.401(4)

C(5)–C(6) 1.378(4) 1.389 1.383 1.372(4)

C(6)–C(7) 1.402(4) 1.403 1.397 1.401(4)

C(7)–C(8) 1.385(4) 1.391 1.387 1.377(4)

C(8)–C(8A) 1.393(4) 1.396 1.389 1.398(4)

C(8A)–N(9) 1.387(3) 1.390 1.383 1.391(4)

N(9)–C(9A) 1.388(3) 1.389 1.383 1.381(4)

N(9)–C(10) 1.458(3) 1.451 1.443 1.458(4)

C(10)–C(11) 1.512(4) 1.523 1.517 1.509(4)

C(11)–C(12) 1.390(4) 1.395 1.390 1.393(4)

C(11)–C(16) 1.392(4) 1.399 1.394 1.384(4)

C(12)–C(13) 1.390(4) 1.395 1.390 1.386(4)

C(13)–C(14) 1.385(4) 1.393 1.388 1.379(5)

C(14)–C(15) 1.386(4) 1.395 1.387 1.379(5)

C(15)–C(16) 1.388(4) 1.393 1.390 1.387(4)

RMS 0.012 0.012 0.073
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Conclusions

A combined experimental and theoretical study has been

performed on 9-benzyl-3,6-diiodo-9H-carbazole. For the

first time its crystal structure was determined at 100 K and

the room-temperature 13C NMR spectrum in CDCl3 solu-

tion was measured. The B3LYP/6-311++G(3df,2pd) cal-

culated gas-phase geometry was close (not identical) to the

X-ray measured structure in the solid state. The observed

I���I contact distances in the crystal structure were

3.9558(3) Å and no H-bonding was observed.

It was essential to employ the relativistic SO ZORA

approach in the chemical shift calculations to reproduce the

experimental chemical shift of carbons C3 and C6 (a very

large HALA effect of -42 ppm was calculated). Finally, we

observed a good linear correlation between experimental

and theoretically predicted structural and NMR parameters.

The aromaticity of individual rings was determined by

calculations of structural (HOMA) and magnetic (NICS)

Fig. 4 Deviation of theoretically calculated non-relativistic (NR) and

relativistic (scalar ZORA and spin–orbit ZORA) 13C chemical shifts

(Dd in ppm) from experimental data measured for 9-benzyl-3,6-

diiodo-9H-carbazole in CDCl3 solution at room temperature

Table 5 Comparison of

HOMA and selected NICS

values for individual rings in

9-benzyl-3,6-diiodo-9H-

carbazole with benzene, pyrrole,

and 9H-carbazole

For the labeling of the rings see

Fig. 1
a Values taken from Ref. [48]

Compound Ring HOMA NICS(0) NICS (1) NICS (1)zz

9-Benzyl-3,6-diiodo-9H-carbazole A 0.962 -9.93 -9.45 -26.68

B 0.446 -9.18 -7.66 -21.62

C 0.960 -8.40 -8.65 -24.22

D 0.996 -7.96 -9.55 -21.97

9H-Carbazolea A 0.919 -12.95 – –

B 0.679 -10.24 – –

C 0.919 -12.95 – –

9H-Carbazole A – -9.18 -10.48 -1.46

B – -8.80 -8.47 -1.20

C – -9.18 -10.48 -1.46

Pyrrole 0.772 -13.47 -10.26 -32.10

Benzene 0.998 -7.81 -10.21 -29.88

Table 4 Comparison of

experimental and theoretically

calculated 13C NMR chemical

shifts (in ppm) at BHandHLYP/

DZP level of theory using scalar

ZORA, spin–orbit ZORA, and

non-relativistic approaches

Both the carbon shieldings

experiencing HALA effect and

RMS values are marked using

bold font

SR ZORA scalar ZORA, NR

non-relativistic

Theoretical calculations Experimental data

Atom numbering NR SR ZORA SO ZORA

C1, 8 112.35 112.18 112.48 111.08

C2, 7 137.64 137.1 137.94 134.70

C3, 6 123.80 127.89 87.83 82.23

C4, 5 131.64 131.07 132.34 129.33

C4A, 5A 127.21 127.12 127.38 127.74

C8A, 9A 144.32 144.17 143.89 139.62

C10 47.89 47.98 47.94 46.56

C11 140.74 140.82 140.78 136.10

C12, 16 128.40 128.38 128.37 124.05

C13, 15 130.43 130.57 130.40 128.88

C14 128.81 128.77 128.75 126.18

RMS 12.85 14.04 3.34
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indexes. The most aromatic ring was the benzyl unit

(HOMA = 0.996). The least aromatic was the pyrrolic ring

(HOMA = 0.446). The calculated NICS indexes showed

all rings also to be aromatic, but there were significant

differences in the predictions of the HOMA and NICS

aromaticity indices for the individual rings.
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