16 research outputs found

    Enantioselective organocatalytic conjugate addition of aldehydes to nitrodienes

    No full text
    The asymmetric organocatalyzed Michael addition of aldehydes to alpha,beta-gamma,delta-unsaturated nitro compounds has been accomplished using only 5 mol % of (S)-diphenylprolinol silyl ether and 2 equiv of aldehyde in a mixture of ethanol and water (5% v/v). The Michael adducts were obtained in good yields, diastereoselectivities up to 94/6, and ee's up to 99%. This process provides synthetically useful compounds which can easily lead to more complex molecules, as exemplified with substituted tetrahydropyran or cyclohexene

    High precision measurements of neutrino fluxes with ENUBET

    No full text
    Neutrino fluxes are currently affected by large normalization uncertainties (5-10%). Neutrino physics will require measurements of absolute neutrino cross sections at the GeV scale with exquisite (1%) precision in the near future. For this reason a reduction of the present uncertainties by one order of magnitude would be highly beneficial. This goal might be achieved by producing a sign and momentum selected narrow band beam and monitoring the production of e+e^{+} in the decay tunnel from the decays of charged Kaons (Ke3K_{e3} channel). This technique, which requires a special instrumented beam-line, would allow a 1% level measurement of the cross-sections of the neutrino species (νe\nu_e and νˉe\bar{\nu}_e) which are the final states involved in the searches for CP violation with muon neutrino beams at long-baseline. The ENUBET Horizon-2020 ERC Consolidator Grant, approved by the European Research Council in 2015, is the framework within which such a non conventional beam-line will be developed. We present a progress report of the project (2016-2021) after about one year of work, the experimental results on ultra-compact calorimeters suited for the instrumenting the decay tunnel and the R&D in the design of the hadronic beamline

    Testbeam performance of a shashlik calorimeter with fine-grained longitudinal segmentation

    No full text
    An iron- plastic-scintillator shashlik calorimeter with a 4.3 X0 longitudinal segmentation was tested in November 2016 at the CERN East Area facility with charged particles up to 5 GeV . The performance of this detector in terms of electron energy resolution, linearity, response to muons and hadron showers are presented in this paper and compared with simulation. Such a fine-grained longitudinal segmentation is achieved using a very compact light readout system developed by the SCENTT and ENUBET Collaborations, which is based on fiber-SiPM coupling boards embedded in the bulk of the detector. We demonstrate that this system fulfills the requirements for neutrino physics applications and discuss performance and additional improvements

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text

    Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

    No full text
    The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations

    Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

    No full text
    International audienceThe Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations

    Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

    No full text
    International audienceThe Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations

    Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

    No full text
    International audienceThe Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations
    corecore