6 research outputs found

    Improved therapeutic outcomes of thermal ablation on rat orthotopic liver allograft sarcoma models by radioiodinated hypericin induced necrosis targeted radiotherapy

    Get PDF
    Residual tumor resulting in tumor recurrence after various anticancer therapies is an unmet challenge in current clinical oncology. This study aimed to investigate the hypothesis that radioiodinated hypericin (131I-Hyp) may inhibit residual tumor recurrence after microwave ablation (MWA) on rat orthotopic liver allograft sarcoma models.Thirty Sprague-Dawley (SD) rats with hepatic tumors were divided into three groups: Group A received laparotomy MWA and sequential intravenous injection (i.v.) of 131I labelled hypericin (131I-Hyp) in a time interval of 24 h; Group B received only laparotomy MWA; Group C was a blank control. Tumor inhibitory effects were monitored with in vivo magnetic resonance imaging (MRI) and these findings were compared to histopathology data before (baseline, day 0) and 1, 4, and 8 days after MWA. In addition, biodistribution of 131I-Hyp was assessed with in vivo single-photon emission computed tomography-computed tomography (SPECT-CT) imaging, in vitro autoradiography, fluorescent microscopy, and gamma counting.A fast clearance of 131I-Hyp and increasing deposit in necrotic tumors appeared over time, with a significantly higher radioactivity than other organs (0.9169 ± 1.1138 % ID/g, P < 0.01) on day 9. Tumor growth was significantly slowed down in group A compared to group B and C according to MRI images and corresponding tumor doubling time (12.13 ± 1.99, 4.09 ± 0.97, 3.36 ± 0.72 days respectively). The crescent tagerability of 131I-Hyp to necrosis was visualized consistently by autoradiography and fluorescence microscopy.In conclusion, 131I-Hyp induced necrosis targeted radiotherapy improved therapeutic outcomes of MWA on rat orthotopic liver allograft sarcoma models.status: publishe

    Additional file 1: Figures S1–S5. of In Vivo Magnetic Resonance Imaging and Microwave Thermotherapy of Cancer Using Novel Chitosan Microcapsules

    No full text
    Figure S1. Size distribution of chitosan, chitosan/Fe3O4 and chitosan/Fe3O4@IL microcapsules were determined by a panel of more than 200 objects in Figure 1b. Figure S2. EDS spectrum of chitosan, chitosan/Fe3O4 and chitosan/Fe3O4@IL microcapsules. Figure S3. TG curve of chitosan, chitosan/Fe3O4 and chitosan/Fe3O4@IL microcapsules. Figure S4. Tumor weight in different groups of mice after various treatments indicated. Figure S5. Magnetization loops of chitosan/Fe3O4@IL microcapsules. Figure S6. FT-IR spectra of IL. (DOC 259 kb
    corecore