573 research outputs found

    Pion Compton scattering and bremsstrahlung

    Full text link
    The pion-polarizability functions are structure functions of pion-Compton scattering. They can be assessed in high-energy pion-nucleus bremsstrahlung reactions, π−+A→π−+Îł+A\pi^- +A\to\pi^- +\gamma +A. We present numerical expectations for pion-nucleus bremsstrahlung cross sections in the Coulomb region, i.e. the small-angle region where the nuclear scattering is dominated by the Coulomb interaction. We investigate the prospects of measuring the polarizability functions for pion-Compton c.m. energies from threshold up to 1 GeV. A meson-exchange model is used for the pion-Compton amplitude.Comment: 20 pages, 11 figure

    Hard pion bremsstrahlung in the Coulomb region

    Full text link
    Hard high-energy pion-nucleus bremsstrahlung, π−+A→π−+Îł+A\pi^- +A\to\pi^- +\gamma +A, is studied in the Coulomb region, i.e. the small-angle region where the nuclear scattering is dominated by the Coulomb interaction. Special attention is focussed on the possibility of measuring the pion polarizability in such reactions. We study the sensitivity to the structure of the underlying the pion-Compton amplitude through a model with σ\sigma, ρ\rho, and a_1 exchanges. It is found that the effective energy in the virtual pion-Compton scattering is often so large that the threshold approximation does not apply.Comment: 18 pages, 5 figure

    Coulomb-nuclear interference in pion-nucleus bremsstrahlung

    Full text link
    Pion-nucleus bremsstrahlung offers a possibility of measuring the structure functions of pion-Compton scattering from a study of the small-momentum-transfer region where the bremsstrahlung reaction is dominated by the single-photon-exchange mechanism. The corresponding cross-section distribution is characterized by a sharp peak at small momentum transfers. But there is also a hadronic contribution which is smooth and constitutes an undesired background. In this communication the modification of the single-photon exchange amplitude by multiple-Coulomb scattering is investigated as well as the Coulomb-nuclear interference term.Comment: 21 pages, 5 figures. Eqs.(51,52) corrected; some new figure

    Resonance Excitations in Be 7 (d,p) Be∗ 8 to Address the Cosmological Lithium Problem

    Get PDF
    6 pags., 5 figs., 3 tabs.The anomaly in lithium abundance is a well-known unresolved problem in nuclear astrophysics. A recent revisit to the problem tried the avenue of resonance enhancement to account for the primordial Li7 abundance in standard big-bang nucleosynthesis. Prior measurements of the Be7(d,p)Be∗8 reaction could not account for the individual contributions of the different excited states involved, particularly at higher energies close to the Q value of the reaction. We carried out an experiment at HIE-ISOLDE, CERN to study this reaction at Ec.m.=7.8 MeV, populating excitations up to 22 MeV in Be8 for the first time. The angular distributions of the several excited states have been measured and the contributions of the higher excited states in the total cross section at the relevant big-bang energies were obtained by extrapolation to the Gamow window using the talys code. The results show that by including the contribution of the 16.63 MeV state, the maximum value of the total S factor inside the Gamow window comes out to be 167 MeV b as compared to earlier estimate of 100 MeV b. However, this still does not account for the lithium discrepancy.D. G. acknowledges research funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 654002 (ENSAR2) and ISRO, Government of India under Grant No. ISRO/RES/2/378/ 15–16. O. T. would like to acknowledge the support by the Spanish Funding Agency (AEI/FEDER, EU) under the project PID2019–104390GB-I00. I. M. would like to acknowledge the support by the Ministry of Science, Innovation and Universities of Spain (Grant No. PGC2018-095640-B-I00). J. C. acknowledges grants from the Swedish Research Council (VR) under Contracts No. VR-2017-00637 and No. VR-2017-03986 as well as grants from the Royal Physiographical Society. J. P. would like to acknowledge the support by Institute for Basic Science (IBS-R031-D1). S. S. acknowledges support by the Academy of Finland (Grant No. 307685)

    Deformation of the N=Z nucleus 76Sr using beta-decay studies

    Get PDF
    A novel method of deducing the deformation of the N=Z nucleus 76Sr is presented. It is based on the comparison of the experimental Gamow-Teller strength distribution B(GT) from its beta decay with the results of QRPA calculations. This method confirms previous indications of the strong prolate deformation of this nucleus in a totally independent way. The measurement has been carried out with a large Total Absorption gamma Spectrometer, "Lucrecia", newly installed at CERN-ISOLDE.Comment: Accepted in Phys. Rev. Letter

    Positron-neutrino correlation in the 0^+ \to 0^+ decay of ^{32}Ar

    Get PDF
    The positron-neutrino correlation in the 0+→0+ÎČ0^+ \to 0^+ \beta decay of 32^{32}Ar was measured at ISOLDE by analyzing the effect of lepton recoil on the shape of the narrow proton group following the superallowed decay. Our result is consistent with the Standard Model prediction. For vanishing Fierz interference we find a=0.9989±0.0052±0.0036a=0.9989 \pm 0.0052 \pm 0.0036, which yields improved constraints on scalar weak interactions

    Study of elastic and inelastic scattering of 7Be + 12C at 35 MeV

    Get PDF
    6 pags., 5 figs., 2 tabs.The elastic and inelastic scattering of Be from C have been measured at an incident energy of 35 MeV. The inelastic scattering leading to the 4.439 MeV excited state of C has been measured for the first time. The experimental data cover an angular range of ξ = 15-120. Optical model analyses were carried out with Woods-Saxon and double-folding potential using the density dependent M3Y (DDM3Y) effective interaction. The microscopic analysis of the elastic data indicates breakup channel coupling effect. A coupled-channel analysis of the inelastic scattering, based on collective form factors, shows that mutual excitation of both Be and C is significantly smaller than the single excitation of C. The larger deformation length obtained from the DWBA analysis could be explained by including the excitation of Be in a coupled-channel analysis. The breakup cross section of Be is estimated to be less than 10% of the reaction cross section. The intrinsic deformation length obtained for the C (4.439 MeV) state is ή = 1.37 fm. The total reaction cross section deduced from the analysis agrees very well with Wong's calculations for similar weakly bound light nuclei on C target.D. Gupta acknowledges research funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654002 (ENSAR2) and ISRO, Government of India under grant no. ISRO/RES/2/378/15-16. O. Tengblad would like to acknowledge the support by the Spanish Funding Agency (AEI / FEDER, EU) under the project PID2019-104390GB-I00. I. Martel would like to acknowledge the support by the Ministry of Science, Innovation and Universities of Spain (Grant No. PGC2018-095640-B-I00). J. Cederkall acknowledges grants from the Swedish Research Council (VR) under contract numbers VR-2017-00637 and VR-2017-03986 as well as grants from the Royal Physiographical Society. J. Park would like to acknowledge the support by Institute for Basic Science (IBS-R031-D1). S. Szwec acknowledges support by the Academy of Finland (Grant No. 307685). A.M.M. is supported by the I+D+i project PID2020-114687GB-I00 funded by MCIN/AEI/10.13039/501100011033, by the grant Group FQM-160 and by project P20_01247, funded by the Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (Spain) and by “ERDF A way of making Europe”

    Study of elastic and inelastic scattering of 7^7Be + 12^{12}C at 35 MeV

    Full text link
    The elastic and inelastic scattering of 7^7Be from 12^{12}C have been measured at an incident energy of 35 MeV. The inelastic scattering leading to the 4.439 MeV excited state of 12^{12}C has been measured for the first time. The experimental data cover an angular range of ξcm\theta_{cm} = 15∘^{\circ}-120∘^{\circ}. Optical model analyses were carried out with Woods-Saxon and double-folding potential using the density dependent M3Y (DDM3Y) effective interaction. The microscopic analysis of the elastic data indicates breakup channel coupling effect. A coupled-channel analysis of the inelastic scattering, based on collective form factors, show that mutual excitation of both 7^7Be and 12^{12}C is significantly smaller than the single excitation of 12^{12}C. The larger deformation length obtained from the DWBA analysis could be explained by including the excitation of 7^7Be in a coupled-channel analysis. The breakup cross section of 7^7Be is estimated to be less than 10%\% of the reaction cross section. The intrinsic deformation length obtained for the 12^{12}C∗^* (4.439 MeV) state is ή2\delta _2 = 1.37 fm. The total reaction cross section deduced from the analysis agrees very well with Wong's calculations for similar weakly bound light nuclei on 12^{12}C target.Comment: 8 pages, 5 figure

    Crossing the Dripline to 11N Using Elastic Resonance Scattering

    Get PDF
    The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion completely analogous to its mirror partner, 11Be. A narrow resonance in the excitation function at 4.33 (+-0.05) MeV was also observed and assigned spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR

    Ξ13\theta_{13}, ÎŽ\delta and the neutrino mass hierarchy at a Îł=350\gamma=350 double baseline Li/B ÎČ\beta-Beam

    Full text link
    We consider a ÎČ\beta-Beam facility where 8^8Li and 8^8B ions are accelerated at Îł=350\gamma = 350, accumulated in a 10 Km storage ring and let decay, so as to produce intense Μˉe\bar \nu_e and Îœe\nu_e beams. These beams illuminate two iron detectors located at L≃2000L \simeq 2000 Km and L≃7000L \simeq 7000 Km, respectively. The physics potential of this setup is analysed in full detail as a function of the flux. We find that, for the highest flux (10×101810 \times 10^{18} ion decays per year per baseline), the sensitivity to Ξ13\theta_{13} reaches sin⁥22Ξ13≄2×10−4\sin^2 2 \theta_{13} \geq 2 \times10^{-4}; the sign of the atmospheric mass difference can be identified, regardless of the true hierarchy, for sin⁥22Ξ13≄4×10−4\sin^2 2 \theta_{13} \geq 4\times10^{-4}; and, CP-violation can be discovered in 70% of the ÎŽ\delta-parameter space for sin⁥22Ξ13≄10−3\sin^2 2 \theta_{13} \geq 10^{-3}, having some sensitivity to CP-violation down to sin⁥22Ξ13≄10−4\sin^2 2 \theta_{13} \geq 10^{-4} for âˆŁÎŽâˆŁâˆŒ90∘|\delta| \sim 90^\circ.Comment: 35 pages, 20 figures. Minor changes, matches the published versio
    • 

    corecore