265 research outputs found

    Evaluating Stability of Aqueous Multiwalled Carbon Nanotube Nanofluids by Using Different Stabilizers

    Get PDF
    The 0.5 wt.% multiwalled carbon nanotubes/water nanofluids (MWNFs) were produced by using a two-step synthetic method with different types and concentrations of stabilizers. The static position method, centrifugal sedimentation method, zeta potential measurements, and rheological experiments were used to assess the stability of the MWNFs and to determine the optimal type and fixed MWCNTs-stabilizer concentration of stabilizer. Finally, MWNFs with different concentrations of MWCNTs were produced using the optimal type and fixed concentration ratio of stabilizer, and their stability, thermal conductivity, and pH were measured to assess the feasibility of using them in heat transfer applications. MWNFs containing SDS and SDBS with MWCNTs-stabilizer concentration ratio were 5 : 2 and 5 : 4, respectively, showed excellent stability when they were evaluated by static position, centrifugal sedimentation, zeta potential, and rheological experiments at the same time. The thermal conductivity of the MWNFs indicated that the most suitable dispersing MWNF contained SDBS. MWNFs with MWCNTs concentrations of 0.25, 0.5, and 1.0 wt.% were fabricated using an aqueous SDBS solution. In addition, the thermal conductivity of the MWNFs was found to have increased, and the thermal conductivity values were greater than that of water at 25°C by 3.20%, 8.46%, and 12.49%

    消化内科护理风险及管理对策分析

    Get PDF
    Objective: To explore the common nursing risk in department of gastroenterology and clinical nursing management strategies, in order to provide the basis for nursing in the department of gastroenterology. Methods: Analyze and discuss of the common characteristics of nursing risk in our hospital department of gastroenterology, and summarize the countermeasure and method of correlation of risk management. The implementation of risk management as the observation group and the other as the control group, and clinical nursing effect between the two groups would be compared. Moreover, nursing ability improvement circumstance for the nursing staff was compared before and after the implementation of risk management. Results: The observation group after the risk management of nursing errors, medical disputes and the patients' satisfaction were better than the control group, there is statistical significance (P< 0.05). After the risk management in Department of gastroenterology, nursing work of nursing staff in various digestive operation is proficient, medical record documents writing norms, communication ability, the emergency ability is superior before the implementation of risk management, there is statistical significance (P<0.05). Conclusion: In the nursing management in the Department of gastroenterology, the implementation of risk management is helpful to improve the ability of nursing and the nursing quality, reduce nursing risk in Department of gastroenterology, and improve hospital patient satisfaction.目的  探讨消化内科中常见的护理风险以及临床护理管理对策,为消化内科的安全护理提供依据。方法  对本院消化内科常见的护理风险特点进行分析讨论,总结相关风险管理的对策与方法。将未实施风险管理作为对照组,实施风险管理为观察组,比较两组临床护理效果,并对护理人员实施风险管理前、后护理能力改善情况进行对比研究。结果  观察组实施风险管理后护理差错、医疗纠纷以及患者护理满意度方面均优于对照组,比较差异有显著性(P<0.05),具有统计学意义。实施风险管理后护理人员对消化内科各种护理工作操作熟练程度,病历文书书写规范性,沟通能力,应急能力等方面均优于实施风险管理前,比较差异有显著性(P<0.05),具有统计学意义。结论  在消化内科的护理管理中,实施风险管理有助于提高护理能力和护理质量,降低消化内科的护理风险,提高患者的满意度

    Phosphorus Efficiency Mechanisms of Two Wheat Cultivars as Affected by a Range of Phosphorus Levels in the Field

    Get PDF
    Phosphorus (P) efficiency includes both P acquisition efficiency (PAE) and internal P utilization efficiency (PUE). Despite substantial research, genotypic variation in PAE and PUE remains incompletely understood in the field. A 2-year field study was conducted to compare PAE and PUE and related morphological, physiological, and molecular root traits of two winter wheat cultivars (Triticum aestivum L. cv. SJZ8 and KN92) in response to six P application rates in a P-deficient calcareous soil. Both cultivars showed similar growth and yield potential at each P supply level, reaching optimal growth at the same P application rate of about 100 kg P ha-1. However, the two cultivars differed in how they achieved yield and P efficiency. As P supply increased for both cultivars, root dry weight (RDW), root length density, and expression of the phosphate transporter gene TaPHT1.2 in roots initially increased and then stabilized, but arbuscular mycorrhizal fungal colonization, rhizosphere acid phosphatase activity, expressions of the P-starvation marker gene TaIPS1.1 and the purple acid phosphatase gene TaPAP16 in roots initially decreased and then stabilized. To enhance P acquisition when the P supply was deficient, KN92 modified the morphology of its roots, while SJZ8 increased the physiological activities in its roots. With an adequate P supply, high expression of TaPHT1.2 in roots might account for efficient P uptake for both cultivars, especially for KN92. Although P uptake per RDW was similar for both cultivars at anthesis, PAE was higher for KN92 than SJZ8 in terms of total P uptake in aboveground parts, whereas shoot and grain PUE were higher in SJZ8 than in KN92, mainly during the reproductive growth stage. These results indicate that P efficiency is under genotypic control at all P supply levels tested in both wheat cultivars, and that the two cultivars depend on different root strategies for P acquisition and utilization in response to changes in the P supply

    The Different Nature in Seyfert 2 Galaxies With and Without Hidden Broad-Line Regions

    Full text link
    We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test if HBLR Sy2s are dominated by active galactic nuclei (AGNs), and if non-HBLR Sy2s are dominated by starbursts. We show that: (1) HBLR Sy2s have larger accretion rates than non-HBLR Sy2s; (2) HBLR Sy2s have larger \Nev λ14.32\lambda 14.32/\Neii λ12.81\lambda 12.81 and \oiv λ25.89\lambda 25.89/\Neii λ12.81\lambda 12.81 line ratios than non-HBLR Sy2s; (3) HBLR Sy2s have smaller IRASIRAS f60/f25f_{60}/f_{25} flux ratio which shows the relative strength of the host galaxy and nuclear emission than non-HBLR Sy2s. So we suggest that HBLR Sy2s and non-HBLR Sy2s are AGN-dominated and starburst-dominated, respectively. In addition, non-HBLR Sy2s can be classified into the luminous (L[OIII]>1041ergss1L_{\rm [O III]}>10^{41} \rm ergs s^{-1}) and less luminous (L[OIII]<1041ergss1L_{\rm [O III]}<10^{41} \rm ergs s^{-1}) samples, when considering only their obscuration. We suggest that: (1) the invisibility of polarized broad lines (PBLs) in the luminous non-HBLR Sy2s depends on the obscuration; (2) the invisibility of PBLs in the less luminous non-HBLR Sy2s depends on the very low Eddington ratio rather than the obscuration.Comment: Accepted by ApJ, 11 pages, 4 figure

    The Effects of miR-195-5p/MMP14 on Proliferation and Invasion of Cervical Carcinoma Cells Through TNF Signaling Pathway Based on Bioinformatics Analysis of Microarray Profiling

    Get PDF
    Background/Aims: This study is aimed at identification of miR-195-5p/MMP14 expression in cervical cancer (CC) and their roles on cell proliferation and invasion profile of CC cells through TNF signaling pathway in CC. Methods: Microarray analysis, gene set enrichment analysis (GSEA) and DAVID were used to analyze differentially expressed miRNAs, mRNAs and signaling pathways. MiR-195-5p and MMP14 expression levels in CC cell were determined by qRT-PCR. Western blot was employed to measure MMP14 and TNF signaling pathway-relating protein level. Luciferase reporter system was used to confirm the targeting relationship between MMP14 and miR-195-5p. Cell proliferation and invasion was respectively deeded by CCK8, transwell. In vivo experiment was carried out to study the impact of MMP14 and miR-195-5p on CC development in mice. Results: The microarray analysis and the results of qRT-PCR determined that miR-195-5p was under-expressed and MMP14 was over-expressed in CC cells. GSEA and DAVID analysis showed that TNF signaling pathway was regulated by miR-195-5p/MMP14 and activated in cervical carcinoma cells. The miR-195-5p and MMP14 have a negative regulation relation. In vivo experiment found that down-regulated MMP14 and up-regulated miR-195-5p suppressed the tumor development. Conclusion: Our results suggest that MMP14 is a direct target of miR-195-5p, and down-regulated MMP14 and up-regulated miR-195-5p suppressed proliferation and invasion of CC cells by inhibiting TNF signaling pathway

    Structural impairment patterns in peripapillary retinal fiber layer and retinal ganglion cell layer in mitochondrial optic neuropathies

    Get PDF
    AIM: To evaluate the structural injure patterns in peripapillary retinal fiber layer (pRNFL), retinal ganglion cell layer (RGCL) and their correlations to visual function in various mitochondrial optic neuropathies (MON) to offer help to their differential diagnosis. METHODS: Totally 32 MON patients (60 eyes) were recruited within 6mo after clinical onsets, including 20 Leber hereditary optic neuropathy (LHON) patients (37 eyes), 12 ethambutol-induced optic neuropathy (EON) patients (23 eyes), and 41 age-gender matched healthy controls (HC, 82 eyes). All subjects had pRNFL and RGCL examinations with optic coherence tomography (OCT) and visual function tests. RESULTS: In the early stages of MON, the temporal pRNFL thickness decreased (66.09±22.57 μm), but increased in other quadrants, compared to HC (76.95±14.81 μm). The other quadrants remaining stable for LHON and EON patients besides the second hour sector of pRNFL thickness reduced and the temporal pRNFL decreased (56.78±15.87 μm) for EON. Total macular thickness in MON reduced remarkably (279.25±18.90 μm; P=0.015), which mainly occurring in the inner circle (3 mm diameter of circle) and the nasal temporal sectors in the outer circle (5.5 mm diameter of circle), in contrast to those in HC. RGCL thickness reduced in each sector of the macula (61.90±8.73 μm; P≤0.001). It strongly showed the correlationship of best corrected visual acuity (R=0.50, P=0.0003) and visual field injury (R=0.54, P=0.0002) in MON patients. CONCLUSION: OCT is a potential tool for detecting structural alterations in the optic nerves of various MON. Different types of MON may have different damage patterns

    Comparative transcriptome analysis of rainbow trout gonadal cells (RTG-2) infected with U and J genogroup infectious hematopoietic necrosis virus

    Get PDF
    Infectious hematopoietic necrosis virus (IHNV) is the causative pathogen of infectious hematopoietic necrosis, outbreaks of which are responsible for significant losses in rainbow trout aquaculture. Strains of IHNV isolated worldwide have been classified into five major genogroups, J, E, L, M, and U. To date, comparative transcriptomic analysis has only been conducted individually for the J and M genogroups. In this study, we compared the transcriptome profiles in U genogroup and J genogroup IHNV-infected RTG-2 cells with mock-infected RTG-2 cells. The RNA-seq results revealed 17,064 new genes, of which 7,390 genes were functionally annotated. Differentially expressed gene (DEG) analysis between U and J IHNV-infected cells revealed 2,238 DEGs, including 1,011 downregulated genes and 1,227 upregulated genes. Among the 2,238 DEGs, 345 new genes were discovered. The DEGs related to immune responses, cellular signal transduction, and viral diseases were further analyzed. RT-qPCR validation confirmed that the changes in expression of the immune response-related genes trpm2, sting, itgb7, ripk2, and irf1, cellular signal transduction-related genes irl, cacnb2, bmp2l, gadd45α, and plk2, and viral disease-related genes mlf1, mtor, armc5, pik3r1, and c-myc were consistent with the results of transcriptome analysis. Taken together, our findings provide a comprehensive transcriptional analysis of the differential virulence of the U and J genogroups of IHNV, and shed new light on the pathogenic mechanisms of IHNV strains

    MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1

    Get PDF
    AbstractMiR-17-92 cluster miRNAs are disclosed to contribute to the development of multiple organs and tumorigenesis, but their roles in pancreas development remains unclear. In this study, we found that miR-19b, a member of miR-17-92, was highly expressed in the pancreatic progenitor cells, and miR-19b could target the 3′ UTR of NeuroD1 mRNA to decrease its protein and mRNA levels. Functional analysis showed that miR-19b exerted little effect on the proliferation of pancreatic progenitors, whereas it inhibited the expression of insulin 1, but not insulin 2 in MIN6 cells. These results suggest that miR-19b can downregulate insulin 1 expression through targeting transcription factor NeuroD1, and thus regulate the differentiation and function of β-cells

    SAR92 clade bacteria are potentially important DMSP degraders and sources of climate-active gases in marine environments

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is one of Earth’s most abundant organosulfur molecules, which can be catabolized by marine bacteria to release climate-active gases through the cleavage and/or demethylation pathways. The marine SAR92 clade is an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, but their ability to catabolize DMSP is untested. Three SAR92 clade strains isolated from coastal seawater in this study and the SAR92 representative strain HTCC2207 were all shown to catabolize DMSP as a carbon source. All the SAR92 clade strains exhibited DMSP lyase activity producing dimethylsulfide (DMS) and their genomes encoded a ratified DddD DMSP lyase. In contrast, only HTCC2207 and two isolated strains contained the DMSP demethylase dmdA gene and potentially simultaneously demethylated and cleaved DMSP to produce methanethiol (MeSH) and DMS. In SAR92 clade strains with dddD and dmdA, transcription of these genes was inducible by DMSP substrate. Bioinformatic analysis indicated that SAR92 clade bacteria containing and transcribing DddD and DmdA were widely distributed in global oceans, especially in polar regions. This study highlights the SAR92 clade of oligotrophic bacteria as potentially important catabolizers of DMSP and sources of the climate-active gases MeSH and DMS in marine environments, particularly in polar regions

    Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from Pigs to Humans, Taiwan

    Get PDF
    We evaluated the disk susceptibility data of 671 nontyphoid Salmonella isolates collected from different parts of Taiwan from March 2001 to August 2001 and 1,261 nontyphoid Salmonella isolates from the National Taiwan University Hospital from 1996 to 2001. Overall, ciprofloxacn resistance was found in 2.7% (18/671) of all nontyphoid Salmonella isolates, in 1.4% (5/347) of Salmonella enterica serotype Typhimurium and in 7.5% (8/107) in S. enterica serotype Choleraesuis nationwide. MICs of six newer fluoroquinolones were determined for the following isolates: 37 isolates of ciprofloxacin-resistant (human) S. enterica Typhimurium (N = 26) and Choleraesuis (N = 11), 10 isolates of ciprofloxacin-susceptible (MIC <1 μg/mL) (human) isolates of these two serotypes, and 15 swine isolates from S. enterica Choleraesuis (N = 13) and Typhmurium (N = 2) with reduced susceptibility to ciprofloxacin (MIC >0.12 μg/mL). Sequence analysis of the gryA, gyrB, parC, parE, and acrR genes, ciprofloxacin accumulation; and genotypes generated by pulsed-field gel electrophoresis with three restriction enzymes (SpeI, XbaI, and BlnI) were performed. All 26 S. enterica Typhimurium isolates from humans and pigs belonged to genotype I. For S. enterica Choleraesuis isolates, 91% (10/11) of human isolates and 54% (7/13) of swine isolates belonged to genotype B. These two genotypes isolates from humans all exhibited a high-level of resistance to ciprofloxacin (MIC 16–64 μg/mL). They had two-base substitutions in the gyrA gene at codons 83 (Ser83Phe) and 87 (Asp87Gly or Asp87Asn) and in the parC gene at codon 80 (Ser80Arg, Ser80Ile, or Ser84Lys). Our investigation documented that not only did these two S. enterica isolates have a high prevalence of ciprofloxacin resistance nationwide but also that some closely related ciprofloxacin-resistant strains are disseminated from pigs to humans
    corecore