85 research outputs found

    The Long-Term Outcomes after Radical Prostatectomy of Patients with Pathologic Gleason 8–10 Disease

    Get PDF
    Background. We explored the long-term clinical outcomes including metastases-free survival and prostate cancer-specific survival (PCSS) in patients with pathologic Gleason 8–10 disease after radical prostatectomy (RP). Methods. We report on 91 patients with PCSS data with a median followup of 8.2 years after RP performed between 1988 and 1997. Cox regression and Kaplan-Meier analysis were used to evaluate year of surgery, pathologic stage, and surgical margin status as predictors of PCSM. Results. Median age was 65 years (IQR: 61–9), and median PSA was 9.7 ng/ml (IQR: 6.1–13.4). Of all patients, 62 (68.9%) had stage T3 disease or higher, and 48 (52.7%) had a positive surgical margin. On multivariate analysis, none of the predictors were statistically significant. Of all patients, the predicted 10-year BCR-free survival, mets-free survival, and PCSS were 59% (CI: 53%–65%), 88% (CI: 84%–92%), and 94% (CI: 91%–97%), respectively. Conclusions. We have demonstrated that cancer control is durable even 10 years after RP in those with pathologic Gleason 8–10 disease. Although 40% will succumb to BCR, only 6% of patients died of their disease. These results support the use of RP for patients with high-risk localized prostate cancer

    Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    Get PDF
    Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays could be of use for integration into a point-of-care test for use in resource constrained settings

    Mapping monoclonal anti-SARS-CoV-2 antibody repertoires against diverse coronavirus antigens

    Get PDF
    Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged continuously, challenging the effectiveness of vaccines, diagnostics, and treatments. Moreover, the possibility of the appearance of a new betacoronavirus with high transmissibility and high fatality is reason for concern. In this study, we used a natively paired yeast display technology, combined with next-generation sequencing (NGS) and massive bioinformatic analysis to perform a comprehensive study of subdomain specificity of natural human antibodies from two convalescent donors. Using this screening technology, we mapped the cross-reactive responses of antibodies generated by the two donors against SARS-CoV-2 variants and other betacoronaviruses. We tested the neutralization potency of a set of the cross-reactive antibodies generated in this study and observed that most of the antibodies produced by these patients were non-neutralizing. We performed a comparison of the specific and non-specific antibodies by somatic hypermutation in a repertoire-scale for the two individuals and observed that the degree of somatic hypermutation was unique for each patient. The data from this study provide functional insights into cross-reactive antibodies that can assist in the development of strategies against emerging SARS-CoV-2 variants and divergent betacoronaviruses

    From Start to Finish: Examining Factors Associated With Higher Likelihood of Publication Among Abstracts Presented at an International Infectious Diseases Scientific Meeting

    Get PDF
    Background The landscape of infectious diseases research by interprofessional teams continues to change in both scope and engagement. Limited information exists regarding publication metrics and factors associated with publication of abstracts presented at professional infectious diseases meetings. Methods This was a retrospective, observational study evaluating abstracts presented at IDWeek in 2017 and 2018. The primary endpoint was the proportion of abstracts that were subsequently published in peer-reviewed journals. Factors associated with publication were evaluated, and a description of publication metrics was reported. Results Of the 887 abstracts analyzed from the IDWeek meetings, 236 (26.6%) were published. Significantly more abstracts were published if they were presented as a platform presentation versus poster presentation (35% vs 21%, P \u3c .001). Inclusion of a PhD author significantly increased the likelihood of publication (P = .0014). Prospective studies, greater number of authors, and greater number of study subjects were more common among published abstracts. Median time to publication was 10.9 months, and the majority were published in infectious diseases journals, with an overall average impact factor of 7.7 across all journals. Conclusions Abstracts from IDWeek presented as oral platforms and those including a PhD author were more likely to be published. Large, diverse authorship teams were common among published abstracts. The high quality of resulting manuscripts is evident by the destination journals and their respective impact factors. These data may be used to inform and motivate clinicians and trainees engaging in infectious diseases–related research

    Mutant SOD1 impairs axonal transport of choline acetyltransferase and acetylcholine release by sequestering KAP3

    Get PDF
    Mutations in the superoxide dismutase 1 (sod1) gene cause familial amyotrophic lateral sclerosis (FALS), likely due to the toxic properties of misfolded mutant SOD1 protein. Here we demonstrated that, starting from the pre-onset stage of FALS, misfolded SOD1 species associates specifically with kinesin-associated protein 3 (KAP3) in the ventral white matter of SOD1G93A-transgenic mouse spinal cord. KAP3 is a kinesin-2 subunit responsible for binding to cargos including choline acetyltransferase (ChAT). Motor axons in SOD1G93A-Tg mice also showed a reduction in ChAT transport from the pre-onset stage. By employing a novel FALS modeling system using NG108-15 cells, we showed that microtubule-dependent release of acetylcholine was significantly impaired by misfolded SOD1 species. Furthermore, such impairment was able to be normalized by KAP3 overexpression. KAP3 was incorporated into SOD1 aggregates in human FALS cases as well. These results suggest that KAP3 sequestration by misfolded SOD1 species and the resultant inhibition of ChAT transport play a role in the dysfunction of ALS

    Rare disruptive variants in the DISC1 Interactome and Regulome : association with cognitive ability and schizophrenia

    Get PDF
    Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWERacross P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.Peer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Host–pathogen interactions in bacterial meningitis

    Get PDF
    corecore