82 research outputs found
Coupled thermomechanical modeling using dissimilar geometries in arpeggio.
Performing coupled thermomechanical simulations is becoming an increasingly important aspect of nuclear weapon (NW) safety assessments in abnormal thermal environments. While such capabilities exist in SIERRA, they have thus far been used only in a limited sense to investigate NW safety themes. An important limiting factor is the difficulty associated with developing geometries and meshes appropriate for both thermal and mechanical finite element models, which has limited thermomechanical analysis to simplified configurations. This work addresses the issue of how to perform coupled analyses on models where the underlying geometries and associated meshes are different and tailored to their relevant physics. Such an approach will reduce the model building effort and enable previously developed single-physics models to be leveraged in future coupled simulations. A combined-environment approach is presented in this report using SIERRA tools, with quantitative comparisons made between different options in SIERRA. This report summarizes efforts on running a coupled thermomechanical analysis using the SIERRA Arpeggio code
Draper Station Analysis Tool
Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems
GT2006-91234 ON NEAR-WALL DYNAMIC COUPLING OF LES WITH RANS TURBULENCE MODELS
ABSTRACT In this paper, the RANS/LES coupling formulation proposed i
Theoretical and experimental studies of electrified interfaces relevant to energy storage
Advances in technology for electrochemical energy storage require increased understanding of electrolyte/electrode interfaces, including the electric double layer structure, and processes involved in charging of the interface, and the incorporation of this understanding into quantitative models. Simplified models such as Helmholtz's electric double-layer (EDL) concept don't account for the molecular nature of ion distributions, solvents, and electrode surfaces and therefore cannot be used in predictive, high-fidelity simulations for device design. This report presents theoretical results from models that explicitly include the molecular nature of the electrical double layer and predict critical electrochemical quantities such as interfacial capacitance. It also describes development of experimental tools for probing molecular properties of electrochemical interfaces through optical spectroscopy. These optical experimental methods are designed to test our new theoretical models that provide descriptions of the electric double layer in unprecedented detail
Is Mira a magneto-dusty rotator?
We investigate the possibility that a magnetic field may be present in the
star Ceti (hereafter, Mira) and that the field plays a role in the star's
mass loss. The model presented here is an application of an earlier derived
theory that has been successfully employed for intermediate and high-mass
evolved stars, and is now extended to the low-mass end. The modelling shows
that it is possible to obtain a hybrid magnetohydrodynamic-dust-driven wind
scenario for Mira, in which the role of a magnetic field in the equatorial
plane of the star is dynamically important for producing a stellar wind. The
wind velocity and the temperatures obtained from the model appear consistent
with findings elsewhere.Comment: 5 pages, 2 figure
- …