530 research outputs found

    Using accreditation of prior experiential learning (apel) to replace a practice placement: A controversial option?

    Get PDF
    The Accreditation of Prior Experiential Learning (APEL) is established in higher education, but there are no studies on its use in occupational therapy. Brunel University wanted to investigate whether APEL could enable occupational therapy students meeting certain criteria to be exempt from the first-year practice placement, and so devised an APEL proposal. Practice placement educators and students were invited to give their opinion on the proposal through a questionnaire; additionally, the students attended a nominal group discussion. Three themes emerged from the six practice placement educators who agreed to participate: logistics, student experience and learning opportunities. The three students who participated valued APEL for confirming and recognising learning from previous experience. The low response impedes establishing any definite views on the topic, but could suggest that APEL is not a controversial option to practice placement educators and students. Further study is required on the adoption of APEL in occupational therapy education

    Absorption of sound in air below 1000 cps

    Get PDF
    Absorption of sound in air measured for varying conditions of pressure, temperature, and humidit

    To adopt is to adapt: The process of implementing the ICF with an acute stroke multidisciplinary team in England

    Get PDF
    Copyright @ 2012 Informa Plc. The article can be accessed from the link below.This article has been made available through the Brunel Open Access Publishing Fund.Purpose: The success of the International Classification of Functioning, Disability and Health (ICF) depends on its uptake in clinical practice. This project aimed to explore ways the ICF could be used with an acute stroke multidisciplinary team and identify key learning from the implementation process. Method: Using an action research approach, iterative cycles of observe, plan, act and evaluate were used within three phases: exploratory; innovatory and reflective. Thematic analysis was undertaken, using a model of immersion and crystallisation, on data collected via interview and focus groups, e-mail communications, minutes from relevant meetings, field notes and a reflective diary. Results: Two overall themes were determined from the data analysis which enabled implementation. There is a need to: (1) adopt the ICF in ways that meet local service needs; and (2) adapt the ICF language and format. Conclusions: The empirical findings demonstrate how to make the ICF classification a clinical reality. First, we need to adopt the ICF as a vehicle to implement local service priorities e.g. to structure a multidisciplinary team report, thus enabling ownership of the implementation process. Second, we need to adapt the ICF terminology and format to make it acceptable for use by clinicians.This study is funded by The Elizabeth Casson Trust. This article is made available through the Brunel Open Access Publishing Fund

    Interprofessional learning in practice: The student experience

    Get PDF
    Interprofessional learning and the development of teamworking skills are recognised as essential for patient care and are also a government priority for undergraduate education. Sixteen occupational therapy students worked on an interprofessional training ward as part of their practice placement and three of them participated in an evaluation using the nominal group technique. Despite this small number, the evaluation identifies the value of this learning experience in giving the students an opportunity to appreciate the importance of interpersonal skills; to learn about other team members’ roles; and to experience the challenges of working on a busy rehabilitation ward for older people

    Meiotic recombination and male infertility: from basic science to clinical reality?

    Get PDF
    Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the treatment of infertility, the molecular and genetic causes of male infertility remain largely elusive. This review will present a summary of our current knowledge on the genetic origin of male infertility and the key events of male meiosis. It focuses on chromosome synapsis and meiotic recombination and the problems that arise when errors in these processes occur, specifically meiotic arrest and chromosome aneuploidy, the leading cause of pregnancy loss in humans. In addition, meiosis-specific candidate genes will be discussed, including a discussion on why we have been largely unsuccessful at identifying disease-causing mutations in infertile men. Finally clinical applications of sperm aneuploidy screening will be touched upon along with future prospective clinical tests to better characterize male infertility in a move towards personalized medicine

    Structure of the met protein and variation of met protein kinase activity among human tumour cell lines.

    Get PDF
    An in vitro autophosphorylation assay has been used to demonstrate that there is considerable variation in met associated protein kinase among human tumour cell lines. Of particular note was the very high level of autophosphorylation of the 140 kD met protein (p140met) in experiments with A431 human cervical carcinoma cells. In contrast in experiments with Daoy human medulloblastoma cells we failed to detect phosphorylation of p140met; instead a high level of phosphorylation of a 132 kD protein was observed. To help understand the basis for the variation in kinase activity and to learn more about the structure of the mature met protein we have analysed p140met in SDS-polyacrylamide gels under non-reducing conditions. Under these conditions the met protein had an apparent molecular weight of 165,000 indicating that the mature met protein may exist as an alpha beta complex in which p140met (designated the beta subunit) is joined by disulphide bonds to a smaller, 25 kD, alpha-chain. We have identified a potential proteolytic cleavage site with the sequence Lys-Arg-Lys-Lys-Arg-Ser at amino acids 303-308 in the human met protein that may account for cleavage of the met protein into alpha and beta subunits

    Convergence of forecast distributions in a 100,000-member idealised convective-scale ensemble

    Get PDF
    Many operational weather services use ensembles of forecasts to generate probabilistic predictions. Computational costs generally limit the size of the ensemble to fewer than 100 members, although the large number of degrees of freedom in the forecast model would suggest that a vastly larger ensemble would be required to represent the forecast probability distribution accurately. In this study, we use a computationally efficient idealised model that replicates key properties of the dynamics and statistics of cumulus convection to identify how the sampling uncertainty of statistical quantities converges with ensemble size. Convergence is quantified by computing the width of the 95% confidence interval of the sampling distribution of random variables, using bootstrapping on the ensemble distributions at individual time and grid points. Using ensemble sizes of up to 100,000 members, it was found that for all computed distribution properties, including mean, variance, skew, kurtosis, and several quantiles, the sampling uncertainty scaled as n-1/2 for sufficiently large ensemble size n. This behaviour is expected from the Central Limit Theorem, which further predicts that the magnitude of the uncertainty depends on the distribution shape, with a large uncertainty for statistics that depend on rare events. This prediction was also confirmed, with the additional observation that such statistics also required larger ensemble sizes before entering the asymptotic regime. By considering two methods for evaluating asymptotic behaviour in small ensembles, we show that the large-n theory can be applied usefully for some forecast quantities even for the ensemble sizes in operational use today

    Can previously sedentary females use the feeling scale to regulate exercise intensity in a gym environment? an observational study

    Get PDF
    Background Recent research suggests that the Feeling Scale (FS) can be used as a method of exercise intensity regulation to maintain a positive affective response during exercise. However, research to date has been carried out in laboratories and is not representative of natural exercise environments. The purpose of this study was to evaluate whether sedentary women can self-regulate their exercise intensity using the FS to experience positive affective responses in a gym environment using their own choice of exercise mode; cycling or treadmill. Methods Fourteen females (24.9 years ± 5.2; height 166.7 ± 5.7 cm; mass 66.3 ± 13.4 kg; BMI 24.1 ± 5.5)) completed a submaximal exercise test and each individual’s ventilatory threshold (V˙T) was identified. Following this, three 20 min gym-based exercise trials, either on a bike or treadmill were performed at an intensity that was self-selected and perceived to correspond to the FS value of +3 (good). Oxygen uptake, heart rate (HR) and ratings of perceived exertion (RPE) were measured during exercise at the participants chosen intensity. Results Results indicated that on average participants worked close to their V˙T and increased their exercise intensity during the 20-min session. Participants worked physiologically harder during cycling exercise. Consistency of oxygen uptake, HR and RPE across the exercise trials was high. Conclusion The data indicate that previously sedentary women can use the FS in an ecological setting to regulate their exercise intensity and that regulating intensity to feel ‘good’ should lead to individuals exercising at an intensity that would result in cardiovascular gains if maintained

    Scaling Contagious Disturbance: A Spatially-Implicit Dynamic Model

    Get PDF
    Spatial processes often drive ecosystem processes, biogeochemical cycles, and land-atmosphere feedbacks at the landscape-scale. Climate-sensitive disturbances, such as fire, land-use change, pests, and pathogens, often spread contagiously across the landscape. While the climate-change implications of these factors are often discussed, none of these processes are incorporated into earth system models as contagious disturbances because they occur at a spatial scale well below model resolution. Here we present a novel second-order spatially-implicit scheme for representing the size distribution of spatially contagious disturbances. We demonstrate a means for dynamically evolving spatial adjacency through time in response to disturbance. Our scheme shows that contagious disturbance types can be characterized as a function of their size and edge-to-interior ratio. This emergent disturbance characterization allows for description of disturbance across scales. This scheme lays the ground for a more realistic global-scale exploration of how spatially-complex disturbances interact with climate-change drivers, and forwards theoretical understanding of spatial and temporal evolution of disturbance

    Distributions and convergence of forecast variables in a 1,000-member convection-permitting ensemble

    Get PDF
    The errors in numerical weather forecasts resulting from limited ensemble size are explored using 1,000-member forecasts of convective weather over Germany at 3-km resolution. A large number of forecast variables at different lead times were examined, and their distributions could be classified into three categories: quasi-normal (e.g., tropospheric temperature), highly skewed (e.g. precipitation), and mixtures (e.g., humidity). Dependence on ensemble size was examined in comparison to the asymptotic convergence law that the sampling error decreases proportional to N−1/2 for large enough ensemble size N, independent of the underlying distribution shape. The asymptotic convergence behavior was observed for the ensemble mean of all forecast variables, even for ensemble sizes less than 10. For the ensemble standard deviation, sizes of up to 100 were required for the convergence law to apply. In contrast, there was no clear sign of convergence for the 95th percentile even with 1,000 members. Methods such as neighborhood statistics or prediction of area-averaged quantities were found to improve accuracy, but only for variables with random small-scale variability, such as convective precipitation.Fil: Craig, George C.. Ludwig Maximilians Universitat; AlemaniaFil: Puh, Matjaž. Ludwig Maximilians Universitat; AlemaniaFil: Keil, Christian. Ludwig Maximilians Universitat; AlemaniaFil: Tempest, Kirsten. Ludwig Maximilians Universitat; AlemaniaFil: Necker, Tobias. Universidad de Viena; AustriaFil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Weissmann, Martin. Universidad de Viena; AustriaFil: Miyoshi, Takemasa. Riken Center For Computational Science; Japó
    • …
    corecore