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PERSPECTIVE

Meiotic recombination and male infertility: from basic
science to clinical reality?

Michael C Hann*, Patricio E Lau* and Helen G Tempest

Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the

treatment of infertility, the molecular and genetic causes of male infertility remain largely elusive. This review will present a summary of

our current knowledge on the genetic origin of male infertility and the key events of male meiosis. It focuses on chromosome synapsis

and meiotic recombination and the problems that arise when errors in these processes occur, specifically meiotic arrest and

chromosome aneuploidy, the leading cause of pregnancy loss in humans. In addition, meiosis-specific candidate genes will be

discussed, including a discussion on why we have been largely unsuccessful at identifying disease-causing mutations in infertile men.

Finally clinical applications of sperm aneuploidy screening will be touched upon along with future prospective clinical tests to better

characterize male infertility in a move towards personalized medicine.
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INTRODUCTION

Infertility is a relatively common problem in humans, estimated to

affect around one in six couples worldwide wishing to start a family1

which is similar to the incidence of diseases associated with lifestyle,

such as diabetes or hypertension.2 Fertility is an extraordinarily com-

plex process that involves gamete formation, transport, fertilization

and implantation which is dependent on numerous pathways and

interactions. Clearly, the large number of pathways and hundreds of

genes involved in this process provides an equally large number of

opportunities for development to go awry, leading to infertility. Given

this, infertility has a diverse range of phenotypes, the etiology of which

appears to affect both males and females equally, with a relatively

equal distribution among male factors, ovarian dysfunction and tubal

factors.2 However, the large majority of cases continue to be diagnosed

as idiopathic, reflecting a poor understanding of the molecular and

genetic defects underlying infertility phenotypes.3

CURRENT MALE FERTILITY TESTING

Typically, fertility tests in men involve semen parameter analysis

utilizing strict guidelines from the World Health Organization.4

Male infertility is defined by defects and reductions in sperm count

(oligozoospermia), motility (asthenozoospermia) and morphology

(teratozoospermia) as defined by the World Health Organization.

Additionally, the semen sample is examined for the presence of other

cells, indicators of patency and function of the genital tract amongst

others.4 Despite our ability to identify semen parameter defects that

contribute to male factor infertility, the genetic and molecular basis

underlying these defects is rarely identified.

KNOWN GENETIC FACTORS ASSOCIATED WITH MALE FACTOR

INFERTILITY

Analysis of chromosome aberrations (karyotyping) is frequently

offered as part of the fertility workup. Karyotype analysis is recom-

mended and routinely performed for couples who experience repeated

spontaneous abortions and men with oligozoospermia, even in the

absence of other clinical presentations. Karyotype abnormalities, be

they structural or numerical in nature, are observed in 0.4% of live-

borns, but infertility is associated with increased levels of chromosome

aberrations5 affecting 2% of males presenting with fertility problems;

6% of oligozoospermic and 14% of non-obstructive azoospermic

(NOA) males.6 In fact, the most common genetically identifiable cause

of male factor infertility is Klinefelter syndrome, which is a condition

that arises as the result of an additional sex chromosome (47,XXY) in

the somatic karyotype.

The second most common genetic cause of male infertility is the

presence of microdeletions on the Y chromosome, which accounts

for a large proportion of azoospermia.7 Three regions on the q-arm

of the Y chromosome have been referred to as ‘azoospermia factors’

(AZFa, AZFb and AZFc proximal to distal respectively), which have

been defined as spermatogenesis loci.8 In addition, the regions

involved in the deletion can offer valuable prognostic information

(reviewed by Krausz et al.9–11). In brief, microdeletion of the entire

AZFa or AZFb regions of the Y chromosome portends an exception-

ally poor prognosis for sperm retrieval, whereas the majority of

men with AZFc deletions have sperm available either within their

semen or retrievable from their testes for use in assisted reproductive

technologies.12
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Another genetic cause of male infertility involves a single gene

mutation in the cystic fibrosis transmembrane conductance regulator

gene. In approximately 80% of cases, fibrosis transmembrane conduc-

tance regulator mutations on both alleles lead to a condition known as

congenital bilateral absence of the vas deferens.13 The absence of the

vas deferens in this condition is a phenotype that prevents the normal

transport of sperm and thus leads to male infertility.13

To date it has been estimated that genetic factors including chro-

mosome aberrations and single gene defects account for approxi-

mately 10%–15% of severe male factor infertility.14 It is inevitable

that as our understanding of genetic and molecular mechanisms of

gamete formation, transport, fertilization and implantation improves

that most, if not all male infertility will have some identifiable genetic

component. One such example includes a study that reports up to 6%

of male patients presenting to infertility clinics with a normal somatic

karyotype have been found to have meiotic alterations in their sper-

matogenic cells.15

OVERVIEW OF MAMMALIAN MEIOSIS

Meiosis is a specialized form of cell division that only takes place in the

gametes and is essential for the completion of spermatogenesis.

Meiosis is a critical step in gamete formation that gives rise to four

gametes with a haploid chromosome complement from a single dip-

loid precursor cell; in essence chromosomes undergo one replication

event followed by two reduction divisions. Errors in meiotic recom-

bination can give rise to gamete aneuploidy (presence of extra or

missing chromosomes), which is the leading cause of pregnancy loss

and developmental disabilities in humans. This review will focus on

our current understanding of errors in male meiotic recombination, in

particular how these contribute to male factor infertility, their clinical

relevance and the translation from basic science to clinical application

will be discussed when applicable.

The process of meiosis is essential for mammalian gamete forma-

tion and has been reviewed extensively elsewhere.16–19 Nevertheless

there are several key processes that take place during meiosis that are

critical for gamete formation and correct chromosome segregation,

these will be reviewed in detail along with their role in male infertility.

The vast majority of meiotic genes have been identified in yeast and

murine models which have provided strong evidence of the cata-

strophic effects on fertility if meiotic genes are perturbed. Such studies

have undoubtedly provided insight into male infertility and published

studies investigating meiotic genes in humans will be discussed.

MEIOTIC PROPHASE I

Perhaps the two major events during meiosis from a genetic stand-

point take place during prophase I and include: (i) homologous

(maternal and paternal) chromosome pairs locate each other and

become physically connected (synapsis); and (ii) genetic exchange

(recombination) takes place ensuring genetic diversity of the species.

Both chromosome synapsis and recombination appear to play a vital

role in correct chromosome segregation by ensuring that homologous

chromosomes remain tethered together until the appropriate time.

Meiosis in males is initiated at puberty during prophase of meiosis I

when homologous chromosomes pair and synapse. Prophase I is

divided into four stages based on the morphology of the XY bivalent

and the synaptic progression of the autosomal bivalents.20 These stages

are: leptotene, zygotene, pachytene and diplotene. Programmed

double strand breaks (DSBs) are formed and marked for repair in

the leptotene stage. The zygotene stage includes homology searches

between homologous chromosomes and the initiation of synapsis.

The completion of synapsis of homologous chromosomes and the

repair of DSBs, using homologous chromosomes as templates, occurs

from mid-zygotene through to the pachytene stages. At the end of the

diplotene stage, desynapsis of homologous chromosomes begins

except for foci of reciprocal exchange, which continues forward in

meiosis as chiasmata that are essential for correct chromosome

segregation.18

The first meiotic division is reductional and separates homologous

chromosomes, producing two secondary spermatocytes. The second

meiotic division occurs immediately after the first division resulting in

an equatorial division and the separation of sister chromatids. The net

result of this process is the production of four haploid spermatids.

MEIOTIC GENE MURINE MODELS

Gene-modified mouse models have demonstrated that genetic defects

in meiotic genes can cause catastrophic reproduction failure, suggest-

ing the possibility that reduced fertility in a proportion of males is

likely caused by defects in meiotic regulatory genes.2,18 In fact, there

are over 400 mouse models where the occurrence of aberrant repro-

ductive phenotypes results in male infertility which is frequently

unforeseen, but quite common.17 Numerous genes have been iden-

tified in mutant mouse models and can be characterized by specific

abnormalities involving meiotic progression, chromosome pairing

and recombination.

Gene knockout models have led to the identification of key proteins

involved in chromosome synapsis and recombination enabling

immunofluorescence techniques to be developed to study meiosis

in males (Figure 1).21,22 Such meiotic studies have undoubtedly

furthered our understanding of meiosis. However, one major draw-

back of such studies is the requirement for testicular biopsies. Thus,

for the most part these studies are restricted to NOA and obstructive

azoospermic (OA) individuals, with vasectomy reversal and testicular

cancer patients forming control groups.

Figure 1 Example of a human pachytene spermatocyte. SCs are shown in red,

centromeres in blue and recombination foci in yellow. Indicated are: two achias-

mate bivalents (including the sex body and an acrocentric bivalent) and an

example of a discontinuity in the SC (gap). SC, synaptonemal complex.
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THE ROLE OF THE SYNAPTONEMAL COMPLEX IN

CHROMOSOME SYNAPSIS AND MEIOTIC ARREST

Chromosome synapsis begins with the formation of the synaptonemal

complex (SC). The SC is composed of transversely and axially

arranged proteins (SCP1 and SCP3, respectively) that join up homo-

logous chromosomes during prophase I in meiosis.23 Timing and

progression of SC formation is strictly organized and maintained,24,25

but occasionally, errors in SC formation occur. Chromosome synapsis

errors include the formation of splits (unpaired regions) and gaps

(discontinuities) (Figure 1).25,26 Aberrations in chromosome synapsis

frequently occur in the heterochromatic regions of chromosomes 1

and 9 and have been reported in all investigated groups (controls,

NOA and OA patients).25,27 However, a significant increase in the

percentage of cells containing unsynapsed regions have been observed

in NOA and OA men compared to controls (20, 10 and 8%, respec-

tively).28 This clearly has important clinical ramifications as asynapsis

in pachytene may arise from a primary meiotic defect that could result

in an increased probability of atresia.29–32 High frequencies of asy-

napsed regions in pachytene, likely prevent the normal progression

of meiotic prophase substages. Asynapsed regions may trigger a check-

point that leads to partial or complete spermatogenic arrest as a result

of severe meiotic defects and hence results in the NOA phenotype.33

MEIOTIC RECOMBINATION

Meiotic recombination is mechanistically responsible for providing

the physical connections that ensure proper alignment and segrega-

tion of chromosomes during cell division through the formation of

chiasmata.34 The process of meiotic recombination is essential for

fertility and integrity of the genome. During prophase I, DSBs are

induced and parental chromosomes are paired based on homologous

sequences. An intact homologous chromosome template is then used

to repair the DSBs. Homologous recombination also occurs in somatic

cells; however, in these cells, a sister chromatid is used as a template for

repair in lieu of an intact homologous chromosome. This is a key

distinction, and results in the reciprocal exchange of genetic sequences

between homologous chromosomes and a complement of alleles that

are not associated with each other on either of the parental chromo-

somes.18 The result of this meiotic process is the reciprocal exchange of

genetic information, creating genetic diversity.

As with SC formation, the process of meiotic recombination is

strictly controlled, both in number and localization of recombination

events. Eighty to ninety percent of cells are found to be in the pachy-

tene stage of meiosis in control males as it is the longest phase.26,33,35,36

Comparatively, a large percentage of NOA males have been identified

as completely lacking meiotic cells (45–53%),26,33,36,37 or severely

reduced frequencies (approximately 10% versus 80–90%) due to a

partial or complete block at the zygotene stage.35 The average number

of recombinatorial events per cell in control males has been shown to

be approximately 50 through cytogenetic studies and immuno-

fluorescence data.36,38–42 There is a significant degree of variability

between controls (13–25%) and between cells from the same indi-

vidual (range: 42.5–55.3 recombination foci per cell).39–42 The major-

ity of published studies provide evidence of a significant reduction in

recombination events per cell in NOA individuals compared to con-

trols (40–42 versus 46–49).33,35,36 Two studies have reported no such

difference in overall recombination between NOA and controls.26,43

ABSENCE OF MEIOTIC RECOMBINATION

Achiasmate bivalents (bivalents lacking a recombination event) have

been reported in all investigated patient groups (Figure 1). The

frequency of achiasmate bivalents in NOA males has been reported

to occur in up to 29% of investigated pachytene spreads, significantly

higher than the 0.1–5% reported in controls. Studies that have karyo-

typed SCs by fluorescent in situ hybridization (FISH) have revealed

that chromosomes 21, 22, X and Y are the most frequently involved.

Given that the bivalents in question almost exclusively only possess

one recombinatorial event, rather than two or more as found for all

other bivalents this finding is perhaps, not unexpected.42,44,45 When

considering the sex chromosomes alone (distinguishable without

FISH), there are mixed reports; including several NOA individuals

with a complete absence of recombination in the sex body26,46 and

one report stating no significant difference between NOA and control

groups.26 It should be noted that this study does report a significant

increase in achiasmate sex bodies for individual NOA men compared

to controls.26 Achiasmate bivalents are clinically relevant as these

bivalents theoretically are unable to orientate themselves on the meta-

phase plate in order to ensure correct chromosome segregation in the

resultant daughter cells.33 Therefore, reduced or absent meiotic

recombination may lead to increased sperm aneuploidy frequencies,

or even spermatogenic arrest, resulting in infertility.36,47,48

MEIOTIC GENES INVESTIGATED IN INFERTILE MEN

Over 75 genes in male infertility mouse models have been identified

that when disturbed, can perturb chromosome pairing and synapsis,

recombination, aneuploidy, DNA replication and repair in spermato-

cytes.17 However, to date, only a handful of studies investigating

meiotic gene mutations in infertile human men have been conducted.

For most part, disease-causing mutations involved in male meiosis

have remained largely elusive with the exception of SPO11 and

SYCP3 mutations.3,49 Several other studies have investigated genes

including SYCP3, SPO11, FKBP6, BOULE, H2AX and REC8, but have

failed to identify any disease-causing mutations.3,50–57

The initiation of meiotic recombination is regulated in a large part

by the protein SPO11. The SPO11 protein is a type II topoisomerase

required for DSB formation in the leptotene stage.58 Errors in meiotic

recombination have been reported in SPO112/2 mice models, which

are infertile and have smaller gonads than wild-type or heterozygote

mice.18 Additionally, yeast SPO11 mutants show a range of pheno-

types from partial loss of function, to complete loss of DSB forma-

tion.59 Both spermatocytes and oocytes from SPO112/2 mice have

been demonstrated to undergo apoptosis during pachytene and diplo-

tene, respectively.18 Although mutations in SPO11 and its regulatory

sequences do not appear to be a common contributor to human male

infertility, when they are present, formation of DSBs appears to be

greatly affected.18 Two NOA patients (n5144) with SPO11 missense

mutations in exons 1 and 9 of the SPO11 gene and 16 single nucleotide

polymorphisms in intron regions have been identified.18 However,

Mori et al.52 did not identify any disease causing mutations in

SPO11 in 53 NOA patients.

The SYCP3 (or SCP3) gene has been shown to encode a DNA-

binding protein that is involved in mediating synapsis between homo-

logous chromosomes during meiosis and forms a key structural

component of the SC. SYCP3 has clearly been shown to result in

meiotic arrest when absent in mouse knockout models,60–62 as a result

of massive apoptotic cell death during meiotic prophase I due to SC

formation failure.62 Two azoospermic individuals (n519) with

maturation arrest have been shown to have a 1-bp deletion

(643delA) resulting in a premature stop codon and truncation of

the C-terminal, coiled coil-forming region of the SYCP3 protein.3

The resultant mutant protein demonstrated significantly reduced

Meiotic recombination and male infertility

MC Hann et al

214

Asian Journal of Andrology



interaction with the wild-type protein in vitro and interfered with

SYCP3 fiber formation in cultured cells.3 However, two other pub-

lished studies have not identified any disease-causing mutations in

SYCP3 (n558 and n522).50,55 It is of note that the patient population

recruited to these studies contained heterogeneous infertility pheno-

types including azoospermia, severe oligozoospermia, Y-chromosome

microdeletions, and complete and incomplete maturation arrest.

GENOME EXPRESSION PROFILING TO IDENTIFY MEIOTIC

GENES

Perhaps the easiest manner in which we can characterize meiotic genes

is through whole-genome expression profiling using oligonucleotide

microarrays, but such gene sets often include non-meiotic genes. A

recent elegantly designed study has developed a novel strategy to

investigate meiotic-specific genes in mice and characterized a subset

of the identified gene products using reverse transcription-PCR of

RNA.2 This study utilized meiotic cells that were fractionated and

enriched by gravity sedimentation from mouse developing testis, thus

allowing the expression profiles of different enriched meiotic cells to

be investigated. This study has identified a total of 726 meiotic-specific

candidate genes that were upregulated during the leptotene/zygotene

stage. Human orthologs of these genes are potential candidates for

meiotic arrest and potentially chromosome aneuploidy.2

THE RELATIONSHIP BETWEEN CHROMOSOME ANEUPLOIDY

AND MALE INFERTILITY

The majority of men presenting with infertility are karyotypically

normal but have reduced semen parameters as defined by the World

Health Organization.4 Perhaps one of the most striking observations is

that infertile men have significantly increased sperm aneuploidy levels

(investigated by FISH analysis) compared to their fertile counterparts.

Increased sperm aneuploidy levels have been reported in infertile men

for all abnormal semen profiles (oligozoospermia, asthenozoosper-

mia, teratozoospermia and azoospermia).63,64 This finding has

obvious clinical ramifications given the fact that aneuploidy, albeit

predominantly maternal in origin (except for the sex chromosomes),

is the leading cause of pregnancy loss and developmental disabilities in

humans.47 Increased aneuploidy frequencies in infertile men have

been reported for all investigated chromosomes. It should be noted

that the nuclear position the chromosome probe occupies and the

probe signal size has been suggested to influence the perceived levels

of aneuploidy.65 However, it is clear that certain chromosomes are

more prone to non-disjunction (chromosomes 21, 22, X and Y); with a

two- to threefold increase in aneuploidy levels for these chromosomes

compared to other chromosomes. Indirect evidence of the require-

ment for meiotic recombination for correct chromosome segregation

has been provided by the observation that achiasmate bivalents pre-

dominantly involve chromosomes 21, 22, X and Y; mirroring the

observation that these are most commonly observed chromosome

aneuploidies in sperm. Further evidence that achiasmate bivalents

can give rise to sperm aneuploidy has been demonstrated by the obser-

vation that the majority of 47,XXY conceptuses of paternal origin have

arisen as a result of failure of recombination between the paternal sex

chromosomes.66 Additionally, there is recent evidence of a correlation

between increased sperm aneuploidy and achiasmate bivalents in

NOA patients.26,67

The majority of aneuploidy studies in sperm from infertile men

report around a threefold increase in sperm aneuploidy levels com-

pared to controls, with levels of up to 10-fold being reported; predo-

minantly for severe infertility (severe oligoasthenoteratozoospermia

and azoospermia).68,69 There are a few case reports of extraordinarily

high levels of aneuploid and polyploid sperm (50–100%) in indivi-

duals with a high proportion of macrocephalic, multinucleated and

multiflagellate sperm.70–73 It perhaps counterintuitive but there is

little or no evidence to suggest that there is a preferential selection

of chromosomally normal sperm for fertilization. In fact, the threefold

increase in aneuploidy observed in sperm from infertile men, is

mirrored by a threefold increase in de novo chromosome abnormal-

ities observed in conceptuses after intracytoplamic sperm injection

compared to the general population.74

SUMMARY

To date, only a relatively small subset of infertile human men have

been studied and reported in the literature. Despite this, we can clearly

identify meiotic abnormalities in chromosome pairing, meiotic pro-

gression and meiotic recombination in humans associated with male

infertility by immunofluorescence and FISH. Additionally, there is

emerging evidence suggesting a correlation between errors in synapsis

and recombination that lead to spermatogenic arrest and increasing

levels of aneuploidy in the gametes which has obvious clinical rami-

fications. Intuitively impairment of chromosome segregation will

have a major impact on the process of meiosis and therefore sper-

matogenesis. Two lines of evidence strongly suggest that the mech-

anism of action may involve aberrant chromosome synapsis and

meiotic recombination. Firstly, studies investigating meiosis in pachy-

tene spermatocytes suggest that azoospermia is, at least in part, related

to an inadequate chromosome pairing and/or synapsis.35,67 Secondly,

reduced or absent recombination has been associated with paternally

derived XXY trisomy.75 Meiotic recombination mediates a critical

meiotic checkpoint, which ensures that all chromosomes are correctly

paired. In the absence of correct chromosome pairing, these cells are

subsequently eliminated leading to azoospermia or oligozoospermia.

However, the system is not perfect and some cells escape the meiotic

checkpoint and hence have a higher risk of aneuploidy as a result

of aberrant chromosome synapsis and/or recombination. What is

hitherto poorly understood and remains the subject of future research

is the precise mechanism(s) by which aberrant chromosome pairing

and reduced recombination occurs in infertile men.

ISSUES ASSOCIATED WITH IDENTIFYING MUTATIONS IN

HUMAN MEIOTIC GENES

The identification of disease-causing mutations in human meiotic

genes remains a potentially rich source of genetic aberrations that

may provide the basis of a variety of infertility phenotypes, particularly

for those involving spermatogenic arrest and increased sperm aneu-

ploidy. However, to date, the identification of mutations in such mei-

otic genes remains largely elusive and somewhat disappointing with

reported mutations in only two genes SPO11 and SYCP3. The reasons

for this are numerous; to date, only a handful of meiotic genes in

humans have been analyzed with potentially hundreds of genes

remaining to be characterized. Thus, although a large number of genes

have been identified in mice models, we have yet to characterize many

of the genes in humans that regulate the initiation, progression and

completion of meiosis. Mutations in human meiotic genes may be

relatively rare and the patient sample size in most studies is extra-

ordinarily small, and thus may explain the lack of identified muta-

tions. The issue is further confounded when the large heterogeneous

etiology of infertility is considered. Mutations will probably be

restricted to a subset of patients, and problems arise as patients may

be included in a heterogeneous study group due to the unspecific
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nature of the designation of their infertility. There is clearly a require-

ment for an appropriate collection of well-characterized patients with

clearly defined meiotic defects to be enrolled in each study, likely only

achievable through large multicenter studies, which is associated with

its own problems. Specifically, the categorization of infertile men into

azoospermic or oligozoospermia may not be specific enough to

identify a patient group that has a truly homozygous etiology for

infertility. For example, it is likely that a mutation in a gene that causes

a complete block at leptotene will be different from one that results in a

block at zygotene or one in which some cells are capable of progressing

to pachytene for example. The issue is further confounded by the fact

that prophase I is a complicated biological process mediated by poten-

tially hundreds of genes and perhaps by complex gene interac-

tions.2,76,77 Researchers are also facing a major challenge applying

yeast data to humans, given that meiotic genes tend not to be ortho-

logous. Additionally, mutations in humans are most likely to be

heterozygous mutations which will probably produce considerably

milder phenotypes than those observed in homozygous animal

models, in which mutations often encompass large parts of the gene

or complete knockouts. Heterozygous mutations will most likely not

result in the catastrophic reproductive phenotypes observed in mouse

models. Nevertheless, such mutations may produce germ cells that

have higher aneuploidy frequencies, but that are still capable of com-

pleting meiosis because of the heterozygous nature of the mutation.

Another confounding fact is that by definition male infertility muta-

tions may in some cases arise de novo, which precludes familial linkage

analysis. However, one elegantly designed study has evaluated 172

candidate polymorphisms for associations with oligozoospermia

and NOA, and has suggested that male factor infertility is likely to

be multigenic.78 The majority of complex diseases studied to date,

have proven to be multigenic;79 this current male infertility

genome-wide association study supports this theory.78 This finding

explains why no single nucleotide polymorphism has been identified

that accounts for any particular male infertility phenotype. The

authors go on to suggest that infertility phenotypes may arise as a

result of a large number of rare variants with a small effect that in

combination are the cause of spermatogenic failure,78 thus requiring

much larger multicenter genome-wide studies perhaps involving

thousands of individuals with well-characterized male infertility phe-

notypes to be undertaken; which is by no means a simple task.

Additionally, structural variations within the genome such as copy

number variants may also play a role in male infertility and should

be investigated in these patient cohorts.78

CLINICAL APPLICATION OF SPERM ANEUPLOIDY SCREENING

Sperm aneuploidy studies have proven to be a valuable research tool

that has enhanced our understanding of the paternal contribution of

aneuploidy. Research thus far has shown that infertile men (in par-

ticular severe oligoasthenoteratozoospermia and azoospermic indivi-

duals) have significantly increased errors in chromosome synapsis and

meiotic recombination compared to their fertile counterparts, leading

to increased chromosome non-disjunction. Clinical testing of aneu-

ploidy frequencies in sperm is relatively simple to achieve and has been

initiated in some clinics. However, sperm aneuploidy screening does

suffer from some drawbacks that are not insurmountable but have

precluded widespread clinical application. These have been reviewed

in detail elsewhere, but in brief include: (i) requirement to score

5–10 000 sperm; (ii) frequently only 2–5 chromosomes are tested;

(iii) the individual sperm to be used for fertility treatment cannot be

screened; therefore, it can only provide an assessment of risk; (iv) there

is a need to identify individuals who would benefit from screening; and

(v) the clinical significance of increased sperm aneuploidy still remains

unclear.21 Nevertheless, only through continued research into meiotic

recombination errors and prospective sperm aneuploidy studies will

it be possible to gain a better understanding of the clinical significance

of increased sperm aneuploidy. It is clear from the scientific literature

that several patient groups could benefit from clinical aneuploidy

screening prior to fertility treatment given the significantly higher

sperm aneuploidy frequencies observed. These include: (i)

Klinefelter syndrome patients; (ii) patients with cytogenetically visible

structural chromosome aberrations; (iii) NOA patients (should

enough sperm be available for treatment and screening); (iv) oligo-

asthenoteratozoospermic patients; (v) patients with a history of

unexplained recurrent pregnancy loss or repeated in vitro fertilization

or intracytoplamic sperm injection failure; and (vi) patients with

very high levels macrocephalic, multinucleated and multiflagellate

sperm.21,80–83 Performing routine sperm aneuploidy screening in

these patients will enable a more individualized risk assessment of

aneuploid offspring. For example, the genetic counseling of a

patient with low levels of sperm aneuploidy (comparable to fertile

controls) will be very different to that of an individual with 40%

aneuploid sperm. This will ultimately allow couples to make more

informed choices about their reproductive future based on their indi-

vidualized risks.21

EMERGING RESEARCH IN THE FIELD OF MALE INFERTILITY

Perhaps some of the most exciting research in the field is from

emerging studies that suggest that the process of spermatogenesis

and fertilization is potentially mediated through a variety of other

mechanisms that might be associated with infertility phenotypes,

including: epigenetic modifications,84,85 ubiquitination,86,87 genome

organization perturbations,88 spermatozoal RNAs,89 proteomics,90

environmental contaminants and pharmacological agents that may

contribute to sperm DNA damage91 among others.

FUTURE CLINICAL PERSPECTIVES FOR MALE FACTOR

INFERTILITY

The research field of reproductive genetics in male infertility is striving

towards being able to offer personalized medicine to identify the

genetic and molecular basis of male infertility phenotypes. One

such example of a personalized approach was previously published

demonstrating in a small cohort of men, a significant reduction in

sperm aneuploidy levels coincident with traditional Chinese herbal

medicine treatment for male infertility.82,92 The ultimate goal has to

be the ability to offer valuable clinical prognostic options with appro-

priate treatment options as a result of the genetic basis of the infertility

phenotype. This clearly remains a question for basic science at present

and for the immediate future. Nevertheless, such goals have already

been achieved through the identification of Y-chromosome micro-

deletions in azoospermic men, for which clearly defined genotype–

phenotype correlations exist depending on the AZF region the

microdeletion encompasses.

CONCLUSION

Current semen analysis is a very limited test at best. Research suggests

that as genomic technologies advance, we are likely to see the advent of

fertility specific microarray chips that will contain genes known to be

involved in gamete formation, transport and fertilization86 along with

a battery of other tests including epigenetic and proteomic tests to

better characterize and identify the genetic basis of male infertility
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phenotypes. Unlike the current situation, this will ultimately enable

patients attending fertility clinics to be offered a comprehensive

diagnosis (rather than idiopathic infertility), along with valuable

prognostic information allowing individualized medicine and treat-

ment options.
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