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Scaling Contagious Disturbance: A
Spatially-Implicit Dynamic Model
Tempest D. McCabe* and Michael C. Dietze

Department of Earth & Environment, Boston University, Boston, MA, United States

Spatial processes often drive ecosystem processes, biogeochemical cycles, and

land-atmosphere feedbacks at the landscape-scale. Climate-sensitive disturbances,

such as fire, land-use change, pests, and pathogens, often spread contagiously

across the landscape. While the climate-change implications of these factors are

often discussed, none of these processes are incorporated into earth system

models as contagious disturbances because they occur at a spatial scale well

below model resolution. Here we present a novel second-order spatially-implicit

scheme for representing the size distribution of spatially contagious disturbances.

We demonstrate a means for dynamically evolving spatial adjacency through time in

response to disturbance. Our scheme shows that contagious disturbance types can

be characterized as a function of their size and edge-to-interior ratio. This emergent

disturbance characterization allows for description of disturbance across scales. This

scheme lays the ground for a more realistic global-scale exploration of how spatially-

complex disturbances interact with climate-change drivers, and forwards theoretical

understanding of spatial and temporal evolution of disturbance.

Keywords: landscape ecology, fire regime, heterogeneity, adjacency, fragmentation, LANDFIRE

INTRODUCTION

Disturbances pose a fundamental scaling problem as they both create and respond to spatial
heterogeneity in the environment (Turner, 2010). Seminal theoretical and experimental work in
scaling explore how disturbances introduce heterogeneity into ecosystem at varying scales: the
patch-dynamics of Pickett and White, the “shifting-mosaic” of Bormann and Likens, and Turner’s
landscape equilibrium, all attempt to resolve the issue of how disturbances on a range of scales
interact to create ecosystem-level patterns (Bormann and Likens, 1979; White and Pickett, 1985;
Turner et al., 1993).

Among disturbance types, contagious disturbances, such as fire, are particularly important
ecologically as they are not only large in total area, but can have large impacts on spatial pattern,
process, and heterogeneity. Contagious disturbances mediate biogeochemical fluxes, are drivers of
landscape ecology, and contribute uncertainty to understanding consequences of anthropogenic
climate change. At the end of the twentieth century on average, 608 Mha of land burned per
year globally, affecting nutrient cycles, community composition, and altering local energy budgets
(Mouillot and Field, 2005; Marlon et al., 2012; Parks et al., 2016; Dannenmann et al., 2018).
Anthropogenic land-use-change also often follows a contagious pattern, beyond its total area and
carbon impact, it is a major driver of habitat fragmentation, with 75% of forests globally located
<1 km from an edge (Haddad et al., 2015). Forest insects and pathogens also frequently spread as
a spatially contagious process and impact a greater area in North America than fire and forestry
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combined (Hicke et al., 2012). Similarly, the spread of invasive
species can alter nutrient cycling and change ecosystem
composition by outcompeting local populations (Vitousek et al.,
1996). Many of the disturbances listed here interact with one
another, for example invasive plants and forest pests can alter
the flammability of an ecosystem (D’Antonio and Vitousek,
1992), while land use creates breaks that alter fire regimes
and other contagious disturbances (Carmo et al., 2011). In
addition, most contagious disturbances are sensitive to climate—
suggesting that anthropogenic climate change could cause novel
behavior or interactions (Mitchell et al., 2014; Harris et al.,
2016). Contagious disturbances are a central component of
understanding an ecosystem, and to understand how ecosystems
will behave in the future we need an understanding of how to
predict contagious disturbances.

Contagious disturbances pose a particular challenge to scaling,
as they not only create and respond to heterogeneity at a local
scale, but they also respond to heterogeneity in neighboring
locations, and in the process create a larger scale spatial pattern.
To date, most efforts at modeling contagious disturbance have
focused on spatially-explicit simulations (Seidl et al., 2011).
In such models, rules are implemented that govern when
and where a disturbance is initiated and whether it spreads
contagiously to adjacent locations. Such rules are easy to
formulate, typically invoking properties of the disturbance (e.g.,
fire intensity), adjacent locations (e.g., fuel load), and some
degree of stochasticity, and are well-known for their ability to
generate complex spatial pattern and temporal dynamics (Keane
et al., 2004; Wolfram, 2017). While such simulation models
have provided considerable insight into contagious disturbance,
they have two critical limitations when it comes to scaling
up disturbance. First, there are basic computational challenges
to simulation at large scales. While contagious disturbance
processes are common in landscape-scale models, they are absent
from dynamic global vegetation models (DGVMs) because it is
not currently possibly to run global models at the fine spatial
resolution required to represent contagion, which has impacts on
estimates of the carbon sink (Melton and Arora, 2014). Second,
simulation models do not provide the same general theoretical
insight found in analytical models.

The goal of this paper is to explore the development of a
general, analytically-tractable, and spatially-implicit approach to
modeling the scaling of contagious disturbance. This framework
is general in the sense that it aims to capture a wide range of
different disturbance types (including non-spreading disturbance
as a special case) to provide a common framework for
understanding their emergent scaling behaviors. It is spatially-
implicit because we make the simplifying assumption that,
when viewed from a large scale, the exact spatial locations of
disturbances do not matter but rather their aggregate statistical
properties. In moving up scales we are not focusing on the spread
of individual disturbance events, but the broader distribution
of disturbance size and shape that characterizes a disturbance
regime spatially.

In developing this approach, we separate the problem of
spatial scaling into two components, heterogeneity and spatial
arrangement. Problems characterized by spatial heterogeneity

are conceptually easier to scale. If an ecological process is only
responding to its local environment, then even if those responses
are non-linear, the emergent “whole” behavior at a larger scale
is just the sum of all the local “parts.” In this case spatial
arrangement does not matter, just the frequency distribution
of the different environmental conditions. This approach has
been applied successfully to the upscaling of many key ecological
processes, such as carbon and water fluxes, even when the
heterogeneity of the process (e.g., distribution of vegetation stand
ages) is evolving dynamically through time (Moorcroft et al.,
2001; Fisher et al., 2018). In practice such approaches are typically
modeled discretely, e.g., a finite number of age classes each with
some fractional area on the landscape.

Ecological processes that depend on spatial arrangement are
conceptually harder to scale, however we argue that not all spatial
arrangement problems have to be spatially-explicit, as many only
depend on relative spatial context. Herein we take the approach
of focusing specifically on approximating the well-established
landscape ecology concept of spatial adjacency, which is a key
driver of many spatial processes. Similar to how we represent
heterogeneity with a probability distribution, at a large scale
we can likewise represent spatial adjacency with the probability
that any two conditions will be adjacent to each other. And
like with heterogeneity, this will typically be modeled discretely,
in this case with a spatial adjacency matrix. If a vector of
fractional abundances provides a first-order approximation of
spatial variability, the combination of a vector of abundances
and matrix of adjacencies thus provides a second-order model.
Not all spatial processes can be approximated via adjacency,
as sometimes higher-order shape and arrangement does matter,
but we posit that this is a useful framework for considering
contagious disturbance and spatial processes of adjacency or of
dynamically evolving adjacency.

For processes where the heterogeneity in the landscape is
fixed on ecological timescales (e.g., elevation, soils), fractional
area and adjacency are likewise fixed and can be pre-computed
(e.g., in GIS). Spatial processes, such as movement across a
landscape, can then be approximated based on adjacency (e.g.,
what is the probability of moving from class A to class C
directly vs. indirectly via B). The challenge with contagious
disturbance arises because it not only responds to heterogeneity
and adjacency, but it also alters both dynamically. Therefore, a
successful approach to scaling contagious disturbance requires
a means of updating both fractional areas and adjacencies in
response to disturbances.

This paper examines three questions: First, how do we
take advantage of adjacency to approximate spatial disturbance
spread? Second, given that disturbance, how do we update
the fractional areas and adjacencies (i.e., how do we make it
dynamic)? Finally, given our ability to simulate disturbances
in a spatially implicit manner, how does this theory compare
to observations? Specifically, our spatially implicit disturbances
model suggests that different disturbance regimes can be
characterized by two metrics: (1) the size distribution of
disturbances; and (2) the relationship between disturbance size
and disturbance interior adjacency scaling. These two metrics
were examined for different disturbance types and ecoregions for
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two contrasting locations, the states of Florida and Oregon, USA.
We hypothesize: (1) that our metrics will distinguish between
different disturbance types and different states; (2) our metrics
will reflect the nested structure of the ecoregions, with ecoregions
from the same state being more similar than comparisons across
states. While many different configuration-based landscape
metrics and indices exist and are used inmanagement, evaluation
of landscape change, and habitat analysis (Uuemaa et al., 2009),
the strength of our metrics is that they are derived directly from a
theoretical understanding of contagious disturbances, thus giving
us an ability to predict how changes in either metric will translate
into changes in future ecosystem processes, heterogeneity, and
adjacency in both the short and long term.

METHODS

Simulating Disturbance Spread
Before diving into how to approximate spatially-explicit models
of contagious disturbance analytically, we first illustrate simple
versions of these spatial models so as to clarify their key
features. Arguably the simplest disturbance process is gap
dynamics (e.g., mortality of individual canopy trees), which is
often approximated as a stochastic process disturbing individual
patches on a grid at random. If we simulate this process through
time (Figure 1 top left), keeping track of the age of each patch
(time since disturbance), and running the simulation until the
stand age distribution reaches steady state, we see that this
age distribution converges to a geometric (discrete exponential)
distribution (Figure 1 mid left). Furthermore, since disturbance
is random and does not depend on patch age or neighborhood,
the spatial neighborhood of each patch is just a sample from this
same geometric distribution. This can be shown by calculating an
adjacency matrix, which tallies the probability that one age class
is adjacent to another (Figure 1 bottom left).

Compare this gap dynamics model with a simple model of
a contagious disturbance (e.g., fire, insects, land use), which
is described first by a probability of disturbance initiation and
second, conditional on initiation, a probability of spread to
adjacent patches. In more complex versions of such models
both these probabilities can vary with age and environmental
conditions (Mann et al., 2012). However, even in the simplest
case, when both probabilities are fixed and disturbances are
random, the model generates much more complex spatial
patterns characterized by larger, contiguous disturbance patches
(Figure 1 right). As before, the overall stand age distribution
remains geometric (Figure 1 mid right), however the pattern
of spatial adjacency is more complicated (Figure 1 bottom
right). First, most newly disturbed patches (age class 0) are
adjacent to other newly disturbed patches (60% in the example
simulation). As we move along the diagonal of the adjacency
matrix, patches in a given age class continue to remain adjacent
to other patches of the same age through time (i.e., larger even-
aged patches remain), but this adjacency decays geometrically as
new disturbances chip away at even aged patches, leaving them
adjacent to younger disturbances. Above the diagonal we see a
pattern similar to gap dynamics, where each age class has some
probability of being adjacent to newly disturbed patches (which

in this simple class is equal for all age classes) and then this
adjacency decays equally for each age class. Matrix elements that
are below the diagonal, which represent the probability that a
patch is adjacent to a patch older than it, age classes likewise
decay geometrically, but each age class is along a different curve
because of the different cumulative probabilities. In other words,
because the elements along the diagonal differ for each age class,
and because the cumulative probabilities must sum to 1, the
remaining cumulative probability is different for each age class.

Armed with a basic understanding of the patterns that
spatially explicit simulations can produce, let us next consider
how to develop a spatially implicit model to approximate the
spread of contagious disturbance. As in the simulation, let us start
by assuming an age or stage structured approach with n discrete
age classes. Next, let us assume that the disturbance has some
initiation probability, p0, that is a vector with the same length
as the number of age classes, n. In other words, the initiation
probability could vary by age class. In this general derivation,
our timestep or “t” represents any discrete timestep (annually,
monthly, etc.). Because disturbance is simulated discretely in
time, the probabilities map to that timestep and can be time
varying (e.g., functions of environmental conditions) without
loss of generality.

Given this initiation probability, the initial disturbance area
(for disturbances with size = 1 patch) is given by I1 = p0 ◦ a,
where a is a vector of the fractional areas of each age class and
◦ denotes element-wise Hadamard multiplication. Next, let us
assume that we know the current adjacency matrix, At , that
describes the probability that a patch of a given age/stage class
is adjacent to patches of the same or other age/stage classes at
time t. Individual elements within At are probabilities, and thus
must be between 0 and 1, and all patches must be adjacent to
some other patch so each row represents a discrete probability
distribution whose elements must sum to 1. However,At does not
need to be symmetric (e.g., Figure 1 bottom right). In practice
the specification of these probabilities will depend on the spatial
grain of the analysis (i.e., patch size) but this does not affect the
mathematical derivation. Also, in practice the initial adjacency,
A0, would need to be derived from some sort of empirical GIS
analysis or some steady-state assumption but this does not affect
the derivation. Finally, except when deriving the dynamics of
updating At+1 given At we will drop the time subscript for
simplicity, as we are not considering changes in A during a
disturbance event.

To allow contagious disturbances to spread we also need to
introduce a probability of spread, ps, given initiation, which
similar to I1 is grain and timestep dependent and could be time
varying. In the general case we will assume ps is a n × n matrix
describing the probability of spreading from one class into any
other class, but in practice ps could be a scalar or set to only
vary by row (dependent on the class the disturbance is spreading
from) or column (dependent on the class being spread into). It
should also be noted that ps does not need to be symmetric—
the probability of spreading from one patch type into another
(e.g., new regeneration into old-growth) need not be the same
as the probability of spreading back. Given this framework we
can next derive the probability of a disturbance spreading to a
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FIGURE 1 | Comparison of Gap dynamics Contagious disturbance simulation. (Left column) Gap dynamic simulation. (Right column) Contagious disturbance

simulation. (Top left) spatial map of stand age, with color on a log scale from youngest (red) to oldest (yellow), (Top right) spatial map of stand age for contagious

disturbance, with color on a log scale from young (red) to old (yellow) and with new disturbances (age = 0) in white. (Middle left) simulated stand age distribution

(black) when disturbance probability is 1% compared to geometric expectation (green), (Middle right) simulated stand age distribution (black) when disturbance

probability is 1% and spread probability is 25% compared to geometric expectation (green), (Bottom) spatial adjacency matrix by age class aggregated into 10 year

bins ([0− 9] = 0, [10− 19] = 1, etc.) with all patches 100 year or older in bin 10. Matrices are colored from white (highest adjacency) through orange to green (lowest

adjacency).

second patch as depending on initiation, probability of spread,
and adjacency:

I2 = (ps ◦ A)I1

Furthermore, we can see that I3 = (ps ◦ A)I2 and so on,
leading to the more general recursion describing the probability

of spreading to h + 1 patches, given that the disturbance has
already spread to h patches.

Ih+1 = (ps ◦ A)Ih = SIh = ShI1

Where S = psA. Note that in this derivation the matrix A is
fixed as it describes the adjacencies among the undisturbed age
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classes; the ongoing disturbance is not an explicit row/column
in A and thus spread only occurs outward into undisturbed
area, and there is no need to account for the spread of a
disturbance backward into patches that were just disturbed. We
also make the simplifying assumption that we are operating
on a sufficiently larger scale that no single disturbance event
changes the adjacency among undisturbed patches enough to
invalidate this approximation (and require updating A during a
disturbance event). That said, adjacency does need to be updated
on our coarser model timestep as what we generally see is small
year-to-year changes that gradually accumulate to appreciable
landscape-scale adjacency shifts over longer time (e.g., decades).

Accumulating the spread over different disturbance sizes leads
to an overall disturbance rate of

D =

∞
∑

h=1

Ih

where D is a vector by class. Overall, while there is
slight underestimation of disturbance extent at high spread
probabilities (Figure 2), the analytical approximation performs
well and incurs a tiny computational cost relative to spatially
explicit models. Also note that this general forward model
has an important special case, ps = 0, which corresponds
to non-contagious disturbances, such as our initial gap
dynamics simulation.

In practice an infinite sum is not actually computable, but
the result will asymptotically approach the analytical result and
thus can be approximated with a finite sum. Furthermore, the
relative proportions of the different age/stage classes within the
ith iteration in the sum (i.e., disturbance of size i), Ii, will rapidly

approach a steady-state distribution. If Ii/
∑

Ii ≈
Ii+1

∑

Ii+1
then we

approximate Ii+1 = IiS with Ii+1 = Iiλ where λ is the dominant
eigenvalue of A. The remainder of the summation

∑

∞

h=i+1 Ih can

thus be approximated as Ii
∑

∞

h=i+1 λh−i. This is just a geometric
series, which has the analytical solution Iiλ(1 − λ)−1. Therefore,
our strategy is to solve the first i terms explicitly and analytically
approximate the tail of the distribution

D =

i
∑

h=1

Ih + Iiλ(1− λ)−1

As seen in Figure 3, this allows the full analytical model to be
accurately approximated with only a small number of matrix
multiplications (∼5 in this scenario)

Dynamic Updating
Fractional Areas
Once the overall disturbance rate, D, has been calculated we need
to update both the fractional areas describing the landscape and
the adjacency matrix between those fractional areas. First, let
us assume that at =

[

a0 a1 . . . an−1 an
]

is a vector describing
the fractional areas of each of our age classes. Let us also
assume that all disturbances reset patches to age class 0, which
is the conventional assumption in cohort-based vegetation
demography models (Moorcroft et al., 2001; Fisher et al., 2018;

VDMS). Note that we are not assuming that disturbance removes
all of the vegetation and that age class 0 is bare ground, but rather
we are using age 0 to semantically indicate 0 years since last
disturbance. Following this assumption, the new fractional area
in age class 0 at time t+1 is simply the sum of the disturbance
rates in each age class times the current fractional area in each of
those age classes, a0,t+1 =

∑n
k=0 ak,tDk,t . Next, for all other age

classes, each age class ages by 1 year and is reduced by the amount
of disturbance that occurred in that class

ak,t+1 = ak−1,t(1− Dk−1,t)

Finally, the oldest age class is a special case, representing all stand
equal or greater than the specified age, and thus is created by
fusing the existing area in that class with the next youngest age
class, minus the disturbance occurring in each

an,t+1 = an−1,t(1− Dn−1,t)+ an,t(1− Dn,t)

Adjacency of Newly Disturbed Patches
In addition to updating the fractional areas in different age classes
we also need to be able to update their adjacencies. This updating
is done after the disturbance events of a given time-step, not as
part of the disturbance simulation itself. This distinction means
that the adjacency at a timestep (At) is not tied to a disturbance
but rather represents the cumulative effects of disturbance on the
landscape over a timestep.

Let us start by focusing on the adjacency of the newly
disturbed age class, a0, with itself, which we will denote as
A00. If we were assessing this adjacency in a spatially-explicit
gridded dataset or simulation, we would estimate the probability
of adjacency in terms of the frequency with which disturbed
patches are adjacent to other disturbed patches vs. non-disturbed
patches. For example, for a disturbance of size 1, all four edges
are facing non-disturbed patches, so the adjacency is 0/4 = 0
(Figure 4). With a disturbance of size 2, the two patches have
a total of eight edges, two of which are on the interior of the
disturbance (disturbed patch adjacent to disturbed patch) and six
external edges that are along the perimeter of the disturbance,
giving an adjacency of 2/8= 0.25. At size 3 there are two possible
disturbance configurations (in a line or an L), but both cases
have a total of four interior edges and eight external edges,
giving an adjacency of 4/12. At size 4 there are five possible
configurations, and the different configurations do not all have
the same perimeter—the square configuration has an adjacency
of 8/16 while all other configurations have an adjacency of 6/16.
If disturbance shapes are completely random then we could work
through the combinatorics of how often each shape is likely to
occur (squares occur 20% of the time) and calculated a weighted
average (0.4). More generally, if we look at the whole map across
disturbances of different sizes the overall mean adjacency of
disturbed patches will be

A00 =

∑

Int
∑

Int +
∑

Ext

where Int are interior edges and Ext are external edges.
Thus, far we have seen that the adjacency (interior/total edges)

has tended to increase as the size of the disturbance increases.
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FIGURE 2 | Validation of the analytical model’s ability to predict disturbance area as a function of spread probability (disturbance initiation probability of 1%).

Simulations run on a 4-sided grid so, for example, a 0.25 spread probability corresponds to four independent chances, each 25%, to spread. The analytical

approximation appears to underestimate disturbance at high spread probabilities.

FIGURE 3 | In this scenario, disturbance was initiated in one class (black) at 10%, and then spread to other classes (spread probability of 25%) based on differing

probabilities of adjacency between classes (50% self-adjacency, 50% adjacent to the next class). Solid and dashed lines are a comparison of how cumulative area

disturbed increased with disturbance size for both the full model and the tail approximation (estimator).

We could continue calculating this pattern to larger disturbances
with more complex shapes and harder combinatorics (e.g., for
a size 5 disturbance there are 372 possible spread scenarios
that produces thirteen possible shapes). However, at this point
it is worth noting that different types of disturbances may be
more likely to produce certain disturbance shapes than others.
For example, some disturbances may tend to produce shapes
that tend to be round (wildfire) while others might tend to

be linear or dendritic (urban development, riverine systems).
These different shapes tend to produce different characteristic
interior/total ratios (i.e., different adjacencies). However, it is
not the overall mean adjacency (interior/total) that characterizes
a disturbance, nor any of the many other landscape metrics
in use (e.g., Maximillian et al., 2019), but the functional
relationship between disturbance size and adjacency, adj (size).
For example, Figure 5 shows the adjacency/size curves for
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FIGURE 4 | Adjacency for small disturbances. Edges are labeled as (E)xterior and (I)interior. For size 1, there is 0 probability of self-adjacency (disturbed patches

adjacent to other disturbed patches). For size 2 and 3 it is 1/4 and 1/3, respectively, while for size 4 the adjacency is either 1/2 (square configuration) or 3/8 (all other

configurations).

FIGURE 5 | Self-adjacency as a function of disturbance size for different

disturbance shapes. Core and Linear are the bounding cases of disturbance

shapes that maximize and minimize self-adjacency (respectively). Spread is a

single realization of the stochastic contagious spread model (Figure 2).

three important cases: random spread (purple), the minimum
adjacency (blue) achieved through linear disturbances, and the
maximum adjacency (red) achieved by circular disturbances that
minimize the interior:total ratio.

To get the overall A00 for the spatially implicit model, we
next replace

A00 =

∑

Int
∑

Int +
∑

Ext

which sums over individual disturbances, with

A00 =

∑

size Int(size)p(size)
∑

size Int(size)p(size)+
∑

size Ext(size)p(size)

which instead sums over each disturbance size. In this
approximation, Int (size) and Ext(size) returns the expected
number of interior and exterior edges while p(size) is the
probability of a disturbance of that size. In the denominator
we can combine terms as

∑

size(Int(size) + Ext(size))p(size) =

∑

size 4 · size · p(size) where the 4 arises from the assumption that
patches are 4 sided. The size distribution itself can be calculated
from the series of Ik, p(h) = (Ih − Ih+1) · h, because Ih represents
the probability of observing a disturbance of size greater or equal
to size h+1. Differencing gives us the probability of a disturbance
size h occurring, which is then multiplied by the disturbance
size to give us the probability of encountering a disturbance
of that size (e.g., the disturbances that stayed size 1 are the
subset of disturbances that were initiated but did not spread to
another grid cell). Finally, just as we truncated the calculation
of D in section Simulating Disturbance Spread, the tails of this
distribution can be approximated by noting that the geometric
series implies a geometric PDF with rate λ. In the numerator we
can use our previously discussed relationship between adjacency
and size class, adj(size) to calculate Int(size) = 4 · size · adj(size).
Putting these together we see that the assumption about the
number of sides to a patch cancels out leaving us with just the
mean adjacency weighted by disturbance size and the disturbance
size probability distribution

A00 =

∑

size adj(size) · size · p(size)
∑

size size · p(size)

This derivation makes sense because large disturbances should
contribute more to the adjacency, but usually occur at lower
probabilities. Our derivation states that the second-order spatial
scaling of any disturbance regime can thus be understood in
terms of its size distribution and adj(size). In the analysis
of empirical disturbances section, we will evaluate these two
components empirically for different disturbance types and
ecoregions in Florida and Oregon. In evaluating this approach
against simple simulation models, we discovered an important
inconsistency in the model, as independent disturbances do
sometimes end up adjacent to each other by chance. Consider
again our earlier example of simulating gap disturbance (ps =

0). In this case there is no spread, and thus our adjacency-
based model makes the prediction that all disturbances are size
= 1, and thus A00 = 0, but in practice we find adjacent
disturbances. To correct our model, we thus added an additional
term in the numerator that accounts for the adjacency between
independent disturbances. The simplest such correction is to
assume that other disturbances are encountered randomly at the
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overall disturbance rate, a0.

A00 =

∑

size Int(size)p(size)+
∑

size a0Ext(size)p(size)
∑

size Int(size)p(size)+
∑

size Ext(size)p(size)

A00 =

∑

size

[

adj(size)+ a0(1− adj (size))
]

· size · p(size)
∑

size size · p(size)

The adjacency predictions corrected to account for this random
self-adjacency performed well (Figure 6).

Adjacency of Non-disturbed Patches
In addition to needing to update the adjacency of disturbed
patches to each other, there are three other cases that need to
be considered: the adjacency of newly disturbed patches to non-
disturbed, the adjacency of non-disturbed to newly disturbed,
and the adjacency of non-disturbed to each other. For these
cases we are going to make the simplifying assumption that
the adjacency in each age class changes in proportion to the
disturbance rate in that age class, Dk. This assumption is likely
reasonable when spread rates are similar among age classes, but
very large differences in spread rates, or large asymmetries in
spread direction, could be tested through a detailed accounting of
the adjacency, A, and spread, ps, at every disturbance size, I, and
age class, k. Doing so would come at the expense of considerably
more complicated accounting and notational complexity, and
thus this is left to future work.

For the first case of disturbances adjacent to non-disturbances,
we want to normalize D by its sum to generate the probability
that the disturbance was in that age class. As with the age-class
distribution, we also want to shift the age classes by 1, to account
for aging, and sum the final two elements in this vector to account
for age-class fusion. Next, because rows sum to zero this vector of
probabilities needs to be reduced by 1− A00, giving

A0k,t+1 =
Dk−1
∑

D
(1− A00,t+1)

Next, consider the case of non-disturbed patches adjacent to
other non-disturbed patches. Here the adjacency should be
reduced by the amount of disturbance in that age class, which
is the disturbance rate normalized by the fractional area.

Aj,k,t+1 = Aj−1,k−1,t(1− Dj−1/aj−1)

As before, age classes are shifted by 1 and the final two classes are
merged, however in this case the merge is an average (weighted
by fractional area), rather than a sum.

Finally, because rows sum to 1, the adjacency of non-disturbed
to newly disturbed patches are one minus the sum of the other
elements in the row

Aj,0,t+1 = 1−
∑

k=1

Aj,k,t+1

To test the performance of the analytical adjacency
approximation, we compared the adjacency matrix predicted
by this model to that generated by a fully spatial stochastic

FIGURE 6 | Validation of the ability of the analytical approximation to predict

self-adjacency of newly-disturbed patches as a function of disturbance spread

probability (disturbance initiation probability set to 10%).

simulation, analogous to the one shown in the right column
of Figure 1 but with a disturbance initiation probability of 1%
and a spread probability of 10%. In both the analytical model
and stochastic simulation, we initiated the landscape from bare
ground (age = 0) and ran the model for 1,000 years to reach
a steady-state.

Analysis of Empirical Disturbances
Data Description
Our analysis looked at disturbances in Oregon and Florida
from the LANDFIRE Disturbance product (Earth Resources
Observation and Science Center, U.S. Geological Survey) for
2014, the most recent year available. Florida and Oregon were
chosen as contrasting disturbance regimes because they are both
areas with fire-based disturbance regimes and a large timber
industry (Fox et al., 2007; Marlon et al., 2012; Mitchell et al.,
2014). The LANDFIRE disturbance product is a 30 × 30m
resolution gridded raster covering the entire US, with each
disturbed cell assigned one of twenty different disturbance types.
Disturbances were determined by a combination of LANDSAT
satellite imagery, MODIS satellite imagery, vegetation change
detection techniques, and a database of disturbance events
detected by other federal agencies (Rollins, 2009; Vogelmann
et al., 2011). Specifically, the 2014 LANDFIRE Disturbance
dataset was constructed with best-pixel composite imagery, other
composite imagery, or majority focal filling to account for
missing data after the decommissioning of LANDSAT 5. In our
analysis we treated the LANDFIREDisturbance product as given,
and did not consider associated levels of uncertainty within
different disturbance types and pixels.

We downloaded US state data from the LANDFIRE
repository, available at https://landfire.cr.usgs.gov/disturbance_
2.php. The authors then subset Disturbance dataset for each
US state based on and Environmental Protection Agency level
II Ecoregion boundaries (Ecoregions; McMahon et al., 2001).
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Subsetting was done using with the R raster and rgdal packages
(Hijmans, 2017; Bivand et al., 2018). We subset the US state-level
rasters to focus on the two forested level II ecoregions within each
state: Mississippi Alluvial and Southeast Coastal Plains (8.5) and
the Southeastern USA Plains (8.3) in Florida; and the Western
Cordilleras (6.2) and Marine West Coast Forest (7.1) in Oregon.
In Oregon we excluded the Cold Deserts ecoregion (10.1) and
in Florida we excluded the Everglades (15.4) (Figure 7). The
resulting four rasters then had adjacency calculations done on all
of the disturbance clumps within each raster (see below).

Calculation of Metrics
The analysis of empirical disturbances focused on the two
metrics that emerged from our theoretical model: disturbance
size distribution and the relationship between interior ratio
and disturbance size. The analysis began by identifying
individual disturbances that were surrounded on all sides by

non-disturbance pixels. Adjacency was determined using the four
cardinal “Rook’s Case” pixels (for two pixels to be adjacent they
had to share a side). For each disturbance we then identified the
disturbance class and calculated the disturbance area and interior
ratio (number of interior edges/total number of edges, Figure 4).
After processing the four rasters, we ended up with a table of

each disturbance event in Florida andOregon, with a record of its
type, size, interior/total ratio, eco region, and US state. This table
is the basis of all further empirical calculations and is publicly
available along with the scripts used to generate it on Github
at https://github.com/mccabete/SpatialAdjacency. This analysis
has no way of distinguishing distinct but adjacent disturbance
events that occurred at different times within a year, therefore
these distinct but adjacent disturbance events were considered
the same clump. This analysis also did not account for relative
area of different disturbance types mixed within a single clump.
Clumps ofmixed disturbance types accounted for a small number

FIGURE 7 | Visualization of data subsetting and model hierarchies. Colored regions show what portions of Oregon and Florida were used in analyses. Cutouts show a

sample of LANDFIRE raster file with disturbances in green. Model hierarchies show the different models compared, and the data used to make each curve.
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of disturbance events (1%), but a large fraction of disturbance
area (56%) (Figure 9; Supplemental Table 1). We treated Mixed
disturbance as a separate class of disturbance in our comparison
of size distributions. To calculate interior ratio curves these
mixed disturbances were removed. Many of the disturbances
most frequently co-occurring within mixed disturbances are
represented in our curve fits (Supplemental Figure 2).

Assessing Statistical Significance
We used two different statistical tests for the two different
disturbance metrics. For the size distributions, we compared the
size distributions of disturbance type, US states, and ecoregions
using a two-sided Kolmogorov–Smirnov test. We corrected
the P-values using a Bonferroni correction (Massey, 1951;
Bland and Altman, 1995). We compared size distributions
of all disturbance types present within Florida and Oregon
that had 20 or more disturbance events. This excluded
biological and disease disturbance classes (N = 4, N = 6;
Supplemental Table 1). We made 66 pairwise comparisons
among 12 disturbance types, and three comparisons among
state and two ecoregions. After correction, our alpha value was
0.000725 (Supplemental Table 2).

For the interior to total ratio, we fit and statistically compared
curves corresponding to null models and different hierarchy
levels. The curves were fitted using a modified Michaelis-Menten
curves of the form y =

axc

b+xc
using a maximum-likelihood

approach assuming Gaussian error (Michaelis and Menten,
1913). The form was chosen based on visual agreement
with the data and maximum likelihood after comparison
with six other functional forms (Supplemental Figure 1;
Supplemental Table 3). Different curves were compared using
a likelihood ratio test. Comparing the curves meant comparing
different hierarchical levels (Figure 7). We fit two hierarchies,
one starting at the US state level, and one at the disturbance-type
level (Figure 7). In the US state hierarchy, an all-data null model
was compared to a model where Oregon and Florida were fit
separately. The US state-model was then compared to a model
where each ecoregion was fit separately. In the second hierarchy,
an all-data null model was compared to a model where each
disturbance type was fit separately. The disturbance-model was
then compared to a disturbance-by- US state model (Figure 7;
Supplemental Table 4). We also separately compared a one-
curve-Florida model to a two-curve-ecoregion model, and a
one-curve-Oregon model to a two-ecoregion-curve model. We
did this to see if the differences between ecoregions within
Florida would be significant in isolation of the differences
between Oregonian ecoregions (Supplemental Table 4). Because
all single-pixel, double-pixel, and triple-pixel configurations
produce the same interior ratio (Figure 4), curves were fit
only to disturbances over 3 pixels (0.27 ha) large. To meet
requirements of likelihood ratio tests, the data was subset to
include only the disturbance types that were common amongst
all ecoregions. Disturbance types included: clearcut, herbicide,
other mechanical disturbances, prescribed fire, thinning, wildfire,
and unknown. The distinction between wildfire, and prescribed
fire is that a wildfire is an unplanned fire, prescribed fires are
intentionally set and managed fires (LANDFIRE Disturbance,

2016). To contextualize modeled curves, we included hexagonal
density plots, representing the spread and overall shape of all the
data used to generate curves (ggplot2, 3.0.0; Wickham, 2016).
To aid in interpretation, the upper and lower bounds for the
interior ratio were also visualized based on calculations of the
theoretical minimum (linear disturbance) and maximum (round
disturbance) interior ratios for a given disturbance size. All
analyses were performed in R (3.5.0; R Core Team, 2018) with
adjacency calculations performed using the raster library (2.6-7;
Hijmans, 2017).

RESULTS

Dynamic Adjacency Updating
The analytical model for calculating disturbance spread and
dynamically updating landscape adjacency was assessed by
comparing the analytical model to a spatially-explicit stochastic
simulation. In both cases the landscape was initiated from bare
ground (age = 0) and run 1,000 years to reach a steady-state.
Figure 8 shows that the steady-state adjacency predicted by
both models had the same structural features, as summarized
in section Simulating Disturbance Spread: patches within an age
class tended to be more self-adjacent, but that self-adjacency
decays geometrically with age; there is also a geometric decay
along rows, but with greater adjacency above the diagonal.
Numerically, the predicted adjacencies were also very similar,
though with the analytical model slightly overpredicting A0,0.
Because so many of the other rates in the adjacency matrix decay
from A0,0, there are slight biases elsewhere. However, the error
propagation from A0,0 is consistent with the underlying structure
for updating the matrix being correct, because it means that
structural elements are preserved as the landscape ages.

This impact of errors in A0,0 on the overall adjacency
calculation was tested with a third model (Figure 8 bottom
left), where the analytical model was run using the A0,0 derived
from the numerical simulation. Overall this model improved the
overall pattern in the adjacency matrix, especially along the main
diagonal. The remaining error (Figure 8 bottom right) is largely
concentrated in two places. First, there is greater adjacency with
the oldest “absorbing” age class than observed in the simulation
(left hand column). Second, because of this the bottom left corner
(adjacency of old age classes to young classes) is a bit lower
than observed. Matrix rows have a sum-to-one constraint, so
some of these errors are inevitable compensating errors. It is also
worth noting that in nudging A0,0 directly we are not nudging
the underlying terms used to calculate A0,0 (I, D, a), which
are also used in update the rest of A, meaning this test is not
strictly internally consistent. An open question is how much of
the remaining error in the adjacency matrix updating, is in the
underlying analytical simulation of disturbance spread (I, D, a)
vs. approximations in the updating of A? This is something we
hope to investigate further in the future.

Disturbance Size Distribution
Our Kolmogorov–Smirnov pairwise comparison of disturbance
type size distributions found that the majority of disturbance
types had significantly distinct distributions (p << 0.001)
(Figure 9; Supplemental Table 2). The three exceptions were
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FIGURE 8 | Comparison between adjacency matrices for a stochastic spatial simulation (simulation from Figure 2, middle) analytical approximation (top), and

analytical approximation where a correction was applied to A00. All adjacency matrices are after 1,000 years (steady state). To the right are difference matrices

between the simulation matrix and the two analytical matrices. Age class aggregated into 10 year bins ([0− 9] = 0, [10− 19] = 1, etc.) with all patches 100 year or

older in bin 10. The 10th column of the error matrices was removed because of a summing to 1 constraint.

clearcut, wildland fire, and harvest, which had non-significant
differences with roughly half of the disturbance classes. Finally,
mastication had no significant difference between wildfire
and chemical (Supplemental Table 2). The size distributions
of Florida and Oregon were significantly different, as well
as the two ecoregions nested within Oregon (p < 0.001;
Supplemental Table 4). The two ecoregions size distributions
nested within Florida were not found to be significantly different.
However, in other size distributions significant differences were
found despite visual similarity in part due to large sample sizes.
The size distributions have a large range in sample sizes. US
state-level size distributions were based on very large sample

sizes (Oregon N = 27,137, Florida N = 20,329). Disturbance
sample sizes range from harvest with N = 22 to unknown
N = 34,560 (Supplemental Table 1). Unknown disturbances
accounted for the majority of disturbance events in the overall
dataset, and a large proportion of the area (20%). All four
ecoregions had a similarly shaped size distribution, with peaks
at single-pixel (0.09 ha) disturbances and at 7 ha disturbances.
The 7-ha peak aligns with disturbance peaks in the disturbance
categories unknown, thinning, wildland fire, mixed, harvest and
wildfire. Within Oregon, the Western Cordillera ecoregion has
more small andmid-level size disturbances than theMarineWest
Coast Forest, the Western Cordillera also had both considerably
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FIGURE 9 | Size density plots showing the contrasts between ecoregion/state

and disturbance type. Colored boxes next to disturbance size density curves

show what ecoregion contains the respective disturbance. Sample sizes

associated with density plots can be found in Supplemental Table 1.

more disturbance events than the Marine West Coast Forest,
and a larger area of disturbance (75%). Disturbance plots show
more varied patterns, Wildfire and prescribed fire have a long
tails, reflecting the influence of rare but large disturbances.
In contrast, thinning and mastication have distinct peaks and
sharper drop-offs, suggesting more standardized anthropogenic
disturbances and smaller sizes. Mixed disturbance has the longest
tail, and no peak at small disturbances. Herbicide and other
mechanical disturbances have visually similar distributions but
were found to be significantly different (Herbicide N = 4,655,
Other Mechanical N = 3,546). Within mixed disturbances,

herbicide and other mechanical disturbances co-occurred most
frequently (Supplemental Figure 2).

Disturbance Interior Ratio Curves
We found a significant effect of US state (p < 0.001) and
ecoregion nested within states (p < 0.01). Oregon had a wider
range of interior ratios, with a higher occurrence of linear
disturbances than Florida (Figure 10). Florida and Oregon have
similar numbers of overall disturbance occurrence, but Oregon
disturbances have a larger proportion of the total area of
disturbances (%79). Within Oregon, small disturbances were
more compact in Marine West Coast forests than in the Western
Cordillera small disturbances, but this relationship crosses, such
that Marine West Coast disturbances were less round at large
disturbance sizes. The curves fit for the two ecoregions in Florida
are nearly identical (Figure 10). Despite visual similarity, the two
ecoregion curves were found to be significantly different even
when compared to just a Florida curve model. Best fit parameters
for all curves are provided in Supplemental Table 5.

In our second hierarchy, there was a significant effect of
disturbance type (p < 0.0001), but not US state nested within
disturbance (p > 0.1). Herbicide is the most distinctively linear,
followed by other mechanical disturbances, and then unknown
disturbances. Fire disturbance types (prescribed and wildfire)
were closer to the maximum interior ratio curve, suggesting that
fires tend to be compact and burned pixels were predominantly
adjacent to other burned pixels (Figure 11). Disturbance-level
curves show that prescribed fires are less compact at smaller
sizes and larger sizes than natural fires, but at the most frequent
size is similarly shaped. Thinning resembles other compact
disturbances, but begins to become more linear at large sizes
relative to wildfire. Clearcut follows a similarly compact pattern
to wildfire. Individual disturbance curves and data plots can be
found in the supplement (Supplemental Figure 3).

DISCUSSION

Theoretical Framework
Our framework for scaling spatially-implicit contagious
disturbances is reasonably accurate, computationally efficient,
and theoretically provocative. Our framework was able to
estimate the fraction of the landscape that was disturbed
as a function of disturbance initiation, adjacency, and
spread probabilities (Figure 2). We were able to show that
disturbance initiated in one age class would spread into stands of
different ages based on their relative adjacencies (Figure 3). We
demonstrated not only the ability to predict the self-adjacency
of newly-disturbed areas (Figure 6), but also the adjacency of
newly-disturbed areas to non-disturbed areas and the ability
to update the adjacency of non-disturbed areas to each other
in light of new disturbance. While the corrected self-adjacency
predictions perform well (Figure 8), improving this correction is
a useful area for future research, for example by accounting for
the size of disturbed patches in calculating the probability that
they will merge. In addition, it is important to note that when
simulating disturbance using empirical adj functions that this
correction term does not need to be included unless distinct,
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FIGURE 10 | Mean trends of Ecoregion within State. Curves match

Ecoregion model curves referenced in Figure 7. Gray hexes correspond to

binned-counts of number of disturbance events. Black lines correspond to

core and linear bounding cases. Parameter values associated with curves can

be found in Supplementary Table 5.

but adjacent, disturbances occurring during the same time step,
were separated in the original data (usually this is not possible).
We were able to successfully update adjacency over 1,000 years
within a reasonable level of accumulated error, and capture the
major emergent features of contagious disturbance adjacency
(Figure 8), such as the geometric decay of self-adjacency as
even-aged stands mature and the geometric decay of adjacency
within an age class (greater probability of being adjacent to newer
disturbances) with greater adjacency above the diagonal (young)

FIGURE 11 | Mean trends of disturbance type. Curves match Disturbance

model curves referenced in Figure 7. Gray hexes correspond to

binned-counts of number of disturbance events. Black lines correspond to

linear bounding cases. Parameter values associated with curves can be found

in Supplementary Table 5. Plots of individual curves against data can be

found in Supplementary Figure 3.

than old. That said, if older age classes are aggregated (bottom
row) then considerable self-adjacency among old-growth stands
can develop.

There are a number of important applications where this
modeling framework can be immediately applied and expanded
upon. At the top of this list is improving the incorporation of sub-
grid scale disturbance processes within regional and global scale
models, such as Dynamic Global Vegetation Models (DGVMs),
Vegetation Demographic Models (VDMs, Fisher et al., 2018),
and coupled Earth System Models. These models operate at a
scale where spatially-explicit approaches are not computationally
feasible– a typical landscape model operating at LANDSAT
(30 × 30m) resolution would require simulating hundreds of
billions of grid cells to capture the Earth’s land surface. As a
result, disturbances that we know to be spatially contagious
are either absent from these models altogether (Hicke et al.,
2012; Dietze and Matthes, 2014; e.g., insects and pathogens)
or represented using much simpler zeroth-order (spatially
homogeneous) or first-order (fractional area) approximations
(e.g., fire, land use). By using these simpler approximations,
existing models miss important ecological phenomena, such as
the spread of disturbance initiated in one age class or vegetation
type into other vegetation within that grid cell. Depending on
whether these models assume fractional areas are completely
independent or randomly-distributed, these approaches will
systematically either over- or underestimate (respectively) the
degree of spatial adjacency occurring on the landscape. This will
potentially bias estimates of dispersal limitation, lateral shading,
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microclimate, and lateral hydrologic and biogeochemical
fluxes (Melton and Arora, 2014).

Even where spatially-explicit models are computable
(e.g., landscape-scale models of vegetation communities and
biogeochemistry), there is often considerable uncertainty in
the initial conditions. Spatially explicit models require state
variables to be estimated at a fine spatial resolution (Shifley
et al., 2008), which is very data intensive and frequently
underconstrained. Furthermore, the errors in spatial maps of
initial conditions are not independent, so the uncertainties
do not simply average out with the number of grid cells. In
contrast, with spatially-implicit models we can often generate
estimates of the probability distributions of age classes and
their adjacency with much greater confidence (law of large
numbers) than we can map explicitly. For example, one may
be able to estimate the fraction of a landscape that is a certain
age class (e.g., 10 to 20-years-old) much more precisely than
one can estimate the age of a specific 30 × 30m pixel. Because
of this, the total predictive uncertainty in a spatially explicit
model could be larger than a spatially-implicit approximation,
for example if the initial condition uncertainties of the spatial
model outweigh the approximation errors of the implicit model
(Dietze, 2017). Without detailed inventory data, initializing a
spatially explicit model presents a trade-off between feasibility
and accuracy.

Beyond the global and vegetation modeling communities,
our derivation can act as a null model for spatial processes
like arrangement, location dependence, and absolute distance
dependence. Arrangement can have an effect on certain
contagious disturbances: for example, corridors can differentially
affect seed dispersal dependent on angle relative to prevailing
wind direction (Damschen et al., 2014). Habitat fragmentation
can correlate with overall abundance of habitat, raising questions
about the separability of configuration from size in occupancy
modeling (Fahrig, 2002; Prugh et al., 2008; With and King,
2018). Absolute distance dependence is common in invasion
ecology, where rare dispersal events over long distances can
have a large effect on the subsequent colonization rates
(Nathan et al., 2003). While some processes have spatial
dependence that cannot be captured in our framework, the
assumptions of our approach allow it to act as a non-
trivial null-model to separate those effects (Rosindell et al.,
2011). Explicitly accounting for size with adjacency is useful
for disentangling the effects of size and arrangement, which
often co-occur and can lead to misattribution (Prugh et al.,
2008).

Empirical Analysis
In this analysis we characterized Oregon’s and Florida’s
disturbance regimes based on their size distributions and the
relationship between disturbance size and interior ratio. We
hypothesized that these metrics would differentiate between
contrasting US state-wide disturbance regimes and disturbance
types, and would reflect the nested structure of ecoregions.
Broadly, we found this to be true. Our interior ratio curves
were able to significantly differentiate between US state,
ecoregion, and disturbance types (Supplemental Table 4). In

particular, different disturbances had characteristic interior
ratio curves. Fire disturbances had compact configurations
while several anthropogenically controlled classes (herbicide
and other mechanical disturbances) spread dendritically.
Relative to other mechanical disturbances and herbicide
thinning spread in a compact way, but notably spread
more dendritically at large disturbance sizes. This could
indicate that thinning management strategies are fragmenting
landscapes compared to natural disturbances. That said,
the hierarchical structure of our analysis did not capture all
possible permutations of lumping and splitting disturbance
types, so similar curves (i.e., Clearcut and Wildfire; Figure 11)
might have been lumped if evaluated independent of other
disturbance classes. Overall, these results suggest that our
metric captures the major features of the regions’ disturbance
regimes, and highlights the effects of anthropogenically
mediated disturbances.

Size distributions of disturbances were generally distinct,
but not sufficient to differentiate all disturbance types. That
said, ecoregion-level size distributions had similar shapes
(Figure 9). The consistent shape of the size distributions
could be an artifact of the LANDFIRE disturbance attribution
(Unknowns were the largest class of disturbance events)
and could reflect the dominance of fire and thinning in
both Florida and Oregon. Visually and statistically, the
ecoregion size distributions support the nesting structure of
the ecoregions: Florida ecoregions are more similar to each
other than they are to the Oregon ecoregions (Figure 9;
Supplemental Table 2). Disturbances reflect that high
spreading probability creates larger disturbances: prescribed
fire, wildland fire, and wildfire are the most long-tailed
distributions (Figure 9).

Overall, a strength of this empirical analysis is that it
describes disturbances in terms of size and of configuration
separately, which contrasts with many spatial metrics which
convolve the two (e.g., mean interior/total). That different
sources of disturbance have different spatial patterns in
disturbances alone is not an unexpected result. Intuitively,
different disturbance mechanisms have different spatial
signatures. A roadway-construction is smaller and narrower
than a typical commercial thinning. These findings take
that intuition a step farther and explore the patterns that
emerge at larger scales. When an ecosystem’s disturbance
regime is changing, that change will manifest as changes to
disturbance size, or disturbance configuration (the interior
ratio curve), or both. In the future, if we characterize
more disturbance regimes in terms of these metrics, and
better understand what factors drive their variability in
time and across large spatial scales, it should be possible
to use these relationships to forecast the spatial scaling of
changing disturbance.

As an example, consider a shift in disturbance regime that
does not change the disturbance size, but shifts the shape from
dendritic to compact. Dendritic disturbances create corridors
through the landscape, which affects the demography of the
ecosystem by changing migration, favoring certain dispersal
mechanisms, and increasing the propagule pressure of certain
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areas. Size and shape of patch plays a role in the success
of invaders (McConnaughay and Bazzaz, 1987; Fahrig, 2002).
Dendritic disturbances alter the abiotic properties of a system
through the creation of edges. Edge-effects have been found in
forest systems to increase carbon uptake, increase available light,
and increase nutrient deposition (Reinmann and Hutyra, 2017).
At the other extreme, more compact disturbances could cause
more evenly aged composition and introduce more within-patch
homogeneity by having a larger fraction of the disturbed pixels
“sheltered” from surrounding areas.

Many contagious disturbances are projected to change
in magnitude, severity, and location with climate change
(Flannigan et al., 2000; Bradley et al., 2010; Mitchell et al.,
2014; Parks et al., 2016). Ultimately, these metrics will
help us make concrete predictions of how to scale up
these disturbances’ regime changes. To be able to do this
the variability within these metrics needs to be explored:
How do they change year-to-year and place-to-place? How
is this variability related to changes in weather, climate,
and characteristics of the biotic and abiotic environment?
This analysis demonstrates that interior ratio curves have
the potential to communicate unique information about
contagious processes and we encourage evaluating its utility in
future work.

Opportunities and Challenges in
Future Implementation
Implementing this spatially-implicit framework in real-world
models requires that a number of inputs be derived through
empirical analysis. First, the initial condition for adjacency,
At=0, needs to be estimated for every large-scale grid cell.
Given maps of current vegetation, this is computationally
intensive but a relatively straightforward operation either within
GIS or scripting languages with geospatial libraries (e.g., R).
Next, users need to then decide whether to forward simulate
disturbances and interior ratios based on initiation probability
and spread probability (section Simulating Disturbance Spread),
or to rely on empirically observed size distributions and
interior ratios (sections Disturbance Size Distribution and
Disturbance Interior Ratio Curves). For short-term simulations,
relying on empirically-derived statistics, such as those derived
here for Florida and Oregon, is probably the easiest way
to implement a wide range of different disturbance types.
The empirical analyses conducted here could be further
broken down using empirical covariates, such as weather, to
capture changes interannual variability in disturbance size and
shape (Hu et al., 2010). For longer-term simulation, forward
simulations have the advantage of being able to extrapolate
to new conditions. In the simplest simulations explored so
far, the initiation and spread probabilities were typically held
constant through time, for different age classes, and as a function
of disturbance size, but as discussed earlier, all of these can
be made to vary based on either mechanistic models (e.g.,
fire ignition and spread; Kitzberger et al., 2012) or empirical
observations. In these cases, there is a well-established body
of literature deriving such relationships for spatially-explicit

landscape models that should be directly translatable to
inform spatially-implicit approaches (Seidl et al., 2011;
Mann et al., 2012).

Once the concept of dynamic adjacency is in place within
large-scale models, this opens the door for improving the
representation of many other ecological processes within
large-scale models. First and foremost is probably the
addition of edge effects, such as lateral light penetration
vs. shading, as 75% of forests globally located <1 km from
an edge (Haddad et al., 2015). Depending on the default
assumption, which varies from model to model, current
approaches are either massively underestimating how bright
large disturbances are, or treating small disturbances as receiving
full sun. Edge effects are known to have large impacts on
microclimate (temperature, humidity, wind, etc.), which will
have impacts on all aspects of modeled ecosystem function
(productivity, biogeochemistry, hydrology, carbon storage,
etc.). In addition to edges, adjacency can also be used to
improve representations of dispersal limitation within large
scale models, which typically assume seed is equally available
at all points within a large grid cell, using the same approach
of iterative multiplication of an adjacency matrix that we
used here to simulate contagious spread. This could also be
particularly useful for representing invasive species in large-scale
models. Finally, adjacency could also be used to improve the
representation of other lateral fluxes, such as hydrologic or
nutrient flows.

We have argued that our size distribution and interior/total
ratio metrics describe disturbance regimes in a way that
forwards our fundamental understanding of disturbances.
However, for a metric to be useful it has to be practical
to measure. How difficult are these metrics to estimate
empirically? Potential challenges arise depending on the scale
of interest. At scales where spatial data is common (remote-
sensing products, GIS analyses) calibration is straightforward.
More work needs to be done to see how these metrics vary
with environmental variable and time to clarify exactly how
much data is required to fully characterize a disturbance
regime. However, our results suggest that these metrics capture
nuanced information about a disturbance regime. Measuring
these metrics across landscapes presents the dual opportunity
to model disturbance and probe theoretical implications of
these metrics.

CONCLUSION

In this paper we lay out a theoretical derivation for the spatially
implicit scaling of disturbances and explore the descriptive
capacity of metrics that emerge from our derivation. We
found that we were able to capture how different spread
probabilities alter a landscape, and could update adjacency
dynamically with new disturbances and stand age. We note
the implications of this technique apply widely to multiple
problems in scaling, through the improvement of ecosystem
models, development of null models and the characterization of
disturbance regimes.
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