105 research outputs found

    Modeling postglacial vegetation dynamics of temperate forests on the Olympic Peninsula (WA, USA) with special regard to snowpack

    Get PDF
    Past and future forest composition and distribution in temperate mountain ranges is strongly influenced by temperature and snowpack. We used LANDCLIM, a spatially explicit, dynamic vegetation model, to simulate forest dynamics for the last 16,000 years and compared the simulation results to pollen and macrofossil records at five sites on the Olympic Peninsula (Washington, USA). To address the hydrological effects of climate-driven variations in snowpack on simulated forest dynamics, we added a simple snow accumulation-and-melt module to the vegetation model and compared simulations with and without the module. LANDCLIM produced realistic present-day species composition with respect to elevation and precipitation gradients. Over the last 16,000 years, simulations driven by transient climate data from an atmosphere-ocean general circulation model (AOGCM) and by a chironomid-based temperature reconstruction captured Late-glacial to Late Holocene transitions in forest communities. Overall, the reconstruction-driven vegetation simulations matched observed vegetation changes better than the AOGCM-driven simulations. This study also indicates that forest composition is very sensitive to snowpack-mediated changes in soil moisture. Simulations without the snow module showed a strong effect of snowpack on key bioclimatic variables and species composition at higher elevations. A projected upward shift of the snow line and a decrease in snowpack might lead to drastic changes in mountain forests composition and even a shift to dry meadows due to insufficient moisture availability in shallow alpine soils

    Pan-European sustainable forest management indicators for assessing Climate-Smart Forestry in Europe

    Get PDF
    The increasing demand for innovative forest management strategies to adapt to and mitigate climate change and benefit forest production, the so-called Climate-Smart Forestry, calls for a tool to monitor and evaluate their implementation and their effects on forest development over time. The pan-European set of criteria and indicators for sustainable forest management is considered one of the most important tools for assessing many aspects of forest management and sustainability. This study offers an analytical approach to selecting a subset of indicators to support the implementation of Climate-Smart Forestry. Based on a literature review and the analytical hierarchical approach, 10 indicators were selected to assess, in particular, mitigation and adaptation. These indicators were used to assess the state of the Climate-Smart Forestry trend in Europe from 1990 to 2015 using data from the reports on the State of Europe's Forests. Forest damage, tree species composition, and carbon stock were the most important indicators. Though the trend was overall positive with regard to adaptation and mitigation, its evaluation was partly hindered by the lack of data. We advocate for increased efforts to harmonize international reporting and for further integrating the goals of Climate-Smart Forestry into national-and European-level forest policy making

    Incidence, Predictors, and Clinical Impact of Early Prasugrel Cessation in Patients With ST-Elevation Myocardial Infarction.

    Get PDF
    BACKGROUND: Early withdrawal of recommended antiplatelet treatment with clopidogrel adversely affects prognosis following percutaneous coronary interventions. Optimal antiplatelet treatment is essential following ST-segment elevation myocardial infarction (STEMI) given the increased risk of thrombotic complications. This study assessed the frequency, predictors, and clinical impact of early prasugrel cessation in patients with STEMI undergoing primary percutaneous coronary interventions. METHODS AND RESULTS: We pooled patients with STEMI discharged on prasugrel in 2 prospective registries (Bern PCI Registry [NCT02241291] and SPUM-ACS (Inflammation and Acute Coronary Syndromes) [NCT01000701]) and 1 STEMI trial (COMFORTABLE-AMI (Comparison of Biomatrix Versus Gazelle in ST-Elevation Myocardial Infarction) [NCT00962416]). Prasugrel treatment status at 1 year was categorized as no cessation; crossover to another P2Y12-inhibitor; physician-recommended discontinuation; and disruption because of bleeding, side effects, or patient noncompliance. In time-dependent analyses, we assessed the impact of prasugrel cessation on the primary end point, a composite of cardiac death, myocardial infarction, and stroke. Of all 1830 included patients (17% women, mean age 59 years), 83% were treated with new-generation drug-eluting stents. At 1 year, any prasugrel cessation had occurred in 13.8% of patients including crossover (7.2%), discontinuation (3.7%), and disruption (2.9%). Independent predictors of any prasugrel cessation included female sex, age, and history of cerebrovascular event. The primary end point occurred in 5.2% of patients and was more frequent following disruption (hazard ratio 3.04, 95% confidence interval,1.34-6.91; P=0.008), without significant impact of crossover or discontinuation. Consistent findings were observed for all-cause death, myocardial infarction, and stent thrombosis following prasugrel disruption. CONCLUSIONS: In this contemporary study of patients with STEMI, early prasugrel cessation was not uncommon and primarily involved change to another P2Y12-inhibitor. Disruption was the only type of early prasugrel cessation associated with statistically significant excess in ischemic risk within 1 year following primary percutaneous coronary interventions

    Reviewing the use of resilience concepts in forest sciences

    Get PDF
    Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed. Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context

    Climate change impacts and adaptation in forest management: a review

    Get PDF

    Tendenzen und Zukunftsperspektiven der pädiatrischen Laboranalytik

    Full text link
    Die Besonderheiten und Veränderungen des wachsenden Organismus, die Anforderungen an Ernährung und Betreuung, aber auch die hier anzutreffenden spezifischen Krankheitsbilder stellen hohe Anforderungen an Untersuchungstechniken und Fachpersonal in der pädiatrischen Labormedizin. Im Folgenden geht es um aktuelle Entwicklungen sowohl bei den niedergelassenen Pädiatern in der Praxis als auch im Bereich der hoch spezialisierten Medizin

    Factors influencing emergency delays in acute stroke management.

    Get PDF
    Early admission to hospital with minimum delay is a prerequisite for successful management of acute stroke. We sought to determine our local pre- and in-hospital factors influencing this delay. Time from onset of symptoms to admission (admission time) was prospectively documented during a 6-month period (December 2004 to May 2005) in patients consecutively admitted for an acute focal neurological deficit presented at arrival and of presumed vascular origin. Mode of transportation, patient's knowledge and correct recognition of stroke symptoms were assessed. Physicians contacted by the patients or their relatives were interviewed. The influence of referral patterns on in-hospital delays was further evaluated. Overall, 331 patients were included, 249 had an ischaemic and 37 a haemorrhagic stroke. Forty-five patients had a TIA with neurological symptoms subsiding within the first hours after admission. Median admission time was 3 hours 20 minutes. Transportation by ambulance significantly shortened admission delays in comparison with the patient's own means (HR 2.4, 95% CI 1.6-3.7). The only other factor associated with reduced delays was awareness of stroke (HR 1.9, 95% CI 1.3-2.9). Early in-hospital delays, specifically time to request CT-scan and time to call the neurologist, were shorter when the patient was referred by his family or to a lesser extent by an emergency physician than by the family physician (p < 0.04 and p < 0.01, respectively) and were shorter when he was transported by ambulance than by his own means (p < 0.01). Transportation by ambulance and referral by the patient or family significantly improved admission delays and early in-hospital management. Correct recognition of stroke symptoms further contributed to significant shortening of admission time. Educational programmes should take these findings into account

    A Novel Soft Robotic Supernumerary Hand for Severely Affected Stroke Patients

    Full text link
    Upper limb functions are severely affected in 23% of the chronic stroke patients, compromising their life quality. To re-enable hand use, providing a degree of functionality and motivating against learned non-use, we propose a robotic supernumerary limb, the SoftHand X (SHX), consisting of a robotic hand, a gravity support system, and different sensors to detect the patient's intent for controlling the robotic hand. In this paper, this novel compensational approach is introduced and experimentally evaluated in stroke patients, assessing its efficacy, usability and safety. Ten patients were asked to perform tasks of a modified Action Research Arm Test with the SHX, by using three input methods. The mARAT scores rated the potentiality of the system. Usability was evaluated with the System Usability Scale, while spasticity before and after use was measured by the modified Ashworth Scale (mAS). Nine patients, not able to perform any tasks without external support, completed the whole experimental procedure using the proposed system with a median score greater than 12/30. Among the three input methods tested, the usability of one was rated as "good" while the other two were rated as "ok". Seven patients exhibited a reduction of the mAS. All nine patients stated that they would use the system frequently. Results obtained suggest that the SHX has the potential to partially compensate severely impaired hand function in stroke patients
    corecore