91 research outputs found

    Interculturalidad: problemáticas y perspectivas diversas

    Get PDF
    Este libro es una muestra de la ampliación de los horizontes reflexivos en torno a la interculturalidad. Se puede, se debe, hoy pensar la filosofía, la política pública, la universidad, la formación del profesorado, las luchas sociales, etc, en clave intercultural. No por un mero afán academicista sino como base para desde ahí construir sociedades interculturales. Hoy ya es lugar común saber que lo intercultural nació vinculado a la simple idea de diversidad; sin embargo, más que nunca es necesario pensarla como posibilidad de ruta crítica de mucho del accionar humano. Este trabajo se publica en el contexto post paro nacional de octubre de 2019. Ahí quedó claro que la interculturalidad tiene que ver con históricas cargas racistas-coloniales y con contemporáneas desigualdades económicas que cruzan geopolíticas globales, regionales y nacionales. Esto nos muestra la necesidad de tomarnos en serio una interculturalidad que apunte a la abolición de las asimetrías sociales en conexión con la apuesta por la construcción de una verdadera plurinacionalidad. Una que exija el respeto a la diferencia en términos políticos y equidad en términos económicos

    Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation

    Full text link
    Microorganisms strongly influence and are required to generate the selective substrate that provides nutrients and support for fungal growth, and ultimately to induce mushroom fructification under controlled environmental conditions. In this work, the fungal and bacterial microbiota living in the different substrates employed in a commercial crop (compost phase I, II and III, flush 1 and 2, and casing material on day 1, 6 and 8 after compost casing and during flush 1 and 2) have been characterized along the different stages of cultivation by metataxonomic analysis (16S rRNA and ITS2), analysis of phospholipid fatty acid content (PLFAs) and RT-qPCR. Additionally, laccase activity and the content of lignin and complex carbohydrates in compost and casing have been quantified. The bacterial diversity in compost and casing increased throughout the crop cycle boosted by the connection of both substrates. As reflected by the PLFAs, the total living bacterial biomass appears to be negatively correlated with the mycelium of the crop. Agaricus bisporus was the dominant fungal species in colonized substrates, displacing the pre-eminent Ascomycota, accompanied by a sustained increase in laccase activity, which is considered to be a major product of protein synthesis during the mycelial growth of champignon. From phase II onwards, the metabolic machinery of the fungal crop degrades lignin and carbohydrates in compost, while these components are hardly degraded in casing, which reflects the minor role of the casing for nourishing the crop. The techniques employed in this study provide a holistic and detailed characterization of the changing microbial composition in commercial champignon substrates. The knowledge generated will contribute to improve compost formulations (selection of base materials) and accelerate compost production, for instance, through biotechnological interventions in the form of tailored biostimulants and to design environmentally sustainable bio-based casing materialsThe project was funded by the H2020 programme under the Marie Sklodowska-Curie grant agreement no. 742966 and also funded by the ADER project grant no. 2016-IDD-00013. [Correction added on 07 August 2020 after first online publication: Figures 3 and 5 have been corrected in this version

    Demersal Fauna on Deep Seamounts of Sierra Leone Rise (Gulf of Guinea, Africa)

    Get PDF
    From January to March 2001 an experimental fishing survey was carried out on the Sierra Leone Rise by four Spanish commercial boats, with the aim of prospecting the fishing potential for longliners of the demersal resources inhabiting the seamounts located between 9ºN-5ºN and 19ºW-27ºW, at depths between 200 m and 1 000 m. A preliminary analysis of the data recorded shows that the demersal fish fauna composition was similar in three of the ten seamounts, with an absolute dominance of the alfonsino, Beryx splendens Lowe, 1838, which accounted for more than 90% of the total catch between 200 and 800 m depth. Other commercial species in catches were Beryx decadacthylus and some Scorpenidae. The size structure and the distribution of alfonsino oscillated between 27 and 52 cm showing an increase of the mean size with depth which is similar to the pattern found in other seamounts worldwide Major abundances were located at the northern surveyed seamount where the highest yields, up to 750 kg per 1 000 hooks, were obtained. The southernmost surveyed seamount exhibited the lowest abundances and was characterized by the absence of the alfonsino in the catches. The species richness of these deep communities was very low, the accompanying fauna comprising less than 30 species. Discarded fishes were, in order of abundance: Promethicthys prometeus, Coloconger cadenati, Polymixia nobilis, Ruvettus pretiosus, Etmopterus princeps, Serranus accraensis and Gephyroberyx darwini

    Assessing Blood-Based Biomarkers to Define a Therapeutic Window for Natalizumab

    Get PDF
    Natalizumab is a monoclonal antibody that binds CD49d. Although it is one of the most effective treatments for Relapsing-Remitting Multiple Sclerosis (RRMS), a dosing regimen has not been optimized for safety and efficacy in individual patients. We aimed to identify biomarkers to monitor Natalizumab treatment and to establish a personalized dose utilizing an ongoing longitudinal study in 29 RRMS patients under Natalizumab with standard interval dose (SD) of 300 mg/4 wks or extended interval dose (EID) of 300 mg/6 wks. Blood samples were analyzed by flow cytometry to determine CD49d saturation and expression in several T and B lymphocytes subpopulations. Each patient was analyzed at two different timepoints separated by 3 Natalizumab administrations. Natalizumab and sVCAM-1 levels in serum were also analyzed using ELISA. To determine the reproducibility of various markers, two different timepoints were compared and no significant differences were observed for CD49d expression nor for saturation; SD patients had higher saturation levels (~80%) than EID patients (~60%). A positive correlation exists between CD49d saturation and Natalizumab serum levels. CD49d expression and saturation are stable parameters that could be used as biomarkers in the immunomonitoring of Natalizumab treatment. Moreover, Natalizumab and sVCAM-1 serum levels could be used to optimize an individual's dosing schedule

    A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model

    Get PDF
    [EN] The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3¿mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them with a poly(l-lactic acid) (PLLA) membrane manufactured by electrospinning. Experimental groups included a group where exclusively PLLA microspheres were implanted, another group where a mixture of 50/50 microspheres of PLLA (hydrophobic and rigid) and others of chitosan (a hydrogel) were used, and a third group used as a control where no material was used and only the membrane was covering the defect. The histological characteristics of the regenerated tissue have been evaluated 3 months after the operation. We found that during the regeneration process the microspheres, and the membrane covering them, are displaced by the neoformed tissue in the regeneration space toward the subchondral bone region, leaving room for the formation of a tissue with the characteristics of hyaline cartilage.Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata, Grant/Award Number: 11/X643; Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional de la Unión Europea, Grant/Award Number: MAT2016-76039-C4-1 2-R; Spanish Ministry of Economy and Competitiveness (MINECO)Zurriaga Carda, J.; Lastra, ML.; Antolinos-Turpin, CM.; Morales-Román, RM.; Sancho-Tello, M.; Perea-Ruiz, S.; Milián, L.... (2020). A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model. Journal of Biomedical Materials Research Part B Applied Biomaterials. 108(4):1428-1438. https://doi.org/10.1002/jbm.b.34490S142814381084Allepuz, A., Martínez, O., Tebé, C., Nardi, J., Portabella, F., & Espallargues, M. (2014). Joint Registries as Continuous Surveillance Systems: The Experience of the Catalan Arthroplasty Register (RACat). The Journal of Arthroplasty, 29(3), 484-490. doi:10.1016/j.arth.2013.07.048Almeida, C. R., Serra, T., Oliveira, M. I., Planell, J. A., Barbosa, M. A., & Navarro, M. (2014). Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomaterialia, 10(2), 613-622. doi:10.1016/j.actbio.2013.10.035Bell, A. D., Hurtig, M. B., Quenneville, E., Rivard, G.-É., & Hoemann, C. D. (2016). Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model. CARTILAGE, 8(4), 417-431. doi:10.1177/1947603516676872Bitencourt, C. da S., Silva, L. B. da, Pereira, P. A. T., Gelfuso, G. M., & Faccioli, L. H. (2015). Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages. Colloids and Surfaces B: Biointerfaces, 136, 678-686. doi:10.1016/j.colsurfb.2015.10.011Bonasia, D. E., Martin, J. A., Marmotti, A., Kurriger, G. L., Lehman, A. D., Rossi, R., & Amendola, A. (2015). The use of autologous adult, allogenic juvenile, and combined juvenile–adult cartilage fragments for the repair of chondral defects. Knee Surgery, Sports Traumatology, Arthroscopy, 24(12), 3988-3996. doi:10.1007/s00167-015-3536-5Carmona, L. (2001). The burden of musculoskeletal diseases in the general population of Spain: results from a national survey. Annals of the Rheumatic Diseases, 60(11), 1040-1045. doi:10.1136/ard.60.11.1040Chu, J., Zeng, S., Gao, L., Groth, T., Li, Z., Kong, J., … Li, L. (2016). Poly (L-Lactic Acid) Porous Scaffold-Supported Alginate Hydrogel with Improved Mechanical Properties and Biocompatibility. The International Journal of Artificial Organs, 39(8), 435-443. doi:10.5301/ijao.5000516Conoscenti, G., Schneider, T., Stoelzel, K., Carfì Pavia, F., Brucato, V., Goegele, C., … Schulze-Tanzil, G. (2017). PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Materials Science and Engineering: C, 80, 449-459. doi:10.1016/j.msec.2017.06.011Dashtdar, H., Murali, M. R., Abbas, A. A., Suhaeb, A. M., Selvaratnam, L., Tay, L. X., & Kamarul, T. (2013). PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surgery, Sports Traumatology, Arthroscopy, 23(5), 1368-1377. doi:10.1007/s00167-013-2723-5Denlinger, L. C., Fisette, P. L., Garis, K. A., Kwon, G., Vazquez-Torres, A., Simon, A. D., … Corbett, J. A. (1996). Regulation of Inducible Nitric Oxide Synthase Expression by Macrophage Purinoreceptors and Calcium. Journal of Biological Chemistry, 271(1), 337-342. doi:10.1074/jbc.271.1.337Fernández, J. M., Cortizo, M. S., & Cortizo, A. M. (2014). Fumarate/Ceramic Composite Based Scaffolds for Tissue Engineering: Evaluation of Hydrophylicity, Degradability, Toxicity and Biocompatibility. Journal of Biomaterials and Tissue Engineering, 4(3), 227-234. doi:10.1166/jbt.2014.1158García Cruz, D. M., Escobar Ivirico, J. L., Gomes, M. M., Gómez Ribelles, J. L., Sánchez, M. S., Reis, R. L., & Mano, J. F. (2008). Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2(6), 378-380. doi:10.1002/term.106Gordon, S. (2007). The macrophage: Past, present and future. European Journal of Immunology, 37(S1), S9-S17. doi:10.1002/eji.200737638Goyal, D., Keyhani, S., Lee, E. H., & Hui, J. H. P. (2013). Evidence-Based Status of Microfracture Technique: A Systematic Review of Level I and II Studies. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 29(9), 1579-1588. doi:10.1016/j.arthro.2013.05.027Hangody, L., Kish, G., Kárpáti, Z., Udvarhelyi, I., Szigeti, I., & Bély, M. (1998). Mosaicplasty for the Treatment of Articular Cartilage Defects: Application in Clinical Practice. Orthopedics, 21(7), 751-756. doi:10.3928/0147-7447-19980701-04Hoemann, C., Kandel, R., Roberts, S., Saris, D. B. F., Creemers, L., Mainil-Varlet, P., … Buschmann, M. D. (2011). International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials. CARTILAGE, 2(2), 153-172. doi:10.1177/1947603510397535Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104(12), 6017-6084. doi:10.1021/cr030441bKuo, T.-F., Lin, M.-F., Lin, Y.-H., Lin, Y.-C., Su, R.-J., Lin, H.-W., & Chan, W. P. (2011). Implantation of platelet-rich fibrin and cartilage granules facilitates cartilage repair in the injured rabbit knee: preliminary report. Clinics, 66(10), 1835-1838. doi:10.1590/s1807-59322011001000026Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. doi:10.2307/2529310Lao, L., Tan, H., Wang, Y., & Gao, C. (2008). Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 66(2), 218-225. doi:10.1016/j.colsurfb.2008.06.014Lastra, M. L., Molinuevo, M. S., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2017). Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro osteochondrogenesis regeneration study. Journal of Biomedical Materials Research Part A, 106(2), 570-579. doi:10.1002/jbm.a.36260Lastra, M. L., Molinuevo, M. S., Cortizo, A. M., & Cortizo, M. S. (2016). Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromolecular Bioscience, 17(5). doi:10.1002/mabi.201600219Lebourg, M., Martínez-Díaz, S., García-Giralt, N., Torres-Claramunt, R., Ribelles, J. G., Vila-Canet, G., & Monllau, J. (2013). Cell-free cartilage engineering approach using hyaluronic acid–polycaprolactone scaffolds: A study in vivo. Journal of Biomaterials Applications, 28(9), 1304-1315. doi:10.1177/0885328213507298Luzardo-Alvarez, A., Blarer, N., Peter, K., Romero, J. F., Reymond, C., Corradin, G., & Gander, B. (2005). Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. Journal of Controlled Release, 109(1-3), 62-76. doi:10.1016/j.jconrel.2005.09.015Mainil-Varlet, P., Van Damme, B., Nesic, D., Knutsen, G., Kandel, R., & Roberts, S. (2010). A New Histology Scoring System for the Assessment of the Quality of Human Cartilage Repair: ICRS II. The American Journal of Sports Medicine, 38(5), 880-890. doi:10.1177/0363546509359068Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448McCormick, F., Harris, J. D., Abrams, G. D., Frank, R., Gupta, A., Hussey, K., … Cole, B. (2014). Trends in the Surgical Treatment of Articular Cartilage Lesions in the United States: An Analysis of a Large Private-Payer Database Over a Period of 8 Years. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30(2), 222-226. doi:10.1016/j.arthro.2013.11.001Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution of in Vivo Articular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404Sancho-Tello, M., Forriol, F., de Llano, J. J. M., Antolinos-Turpin, C., Gómez-Tejedor, J. A., Ribelles, J. L. G., & Carda, C. (2017). Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits. The International Journal of Artificial Organs, 40(7), 350-357. doi:10.5301/ijao.5000598Steadman, J. R., Rodkey, W. G., Briggs, K. K., & Rodrigo, J. J. (1999). The microfracture technique to treat full thickness articular cartilage defects of the knee. Der Orthopäde, 28(1), 26-32. doi:10.1007/pl00003545Tetè, S., Mastrangelo, F., Carone, L., Nargi, E., Costanzo, G., Vinci, R., … Ciccarelli, R. (2007). Morphostructural Analysis of Human Follicular Stem Cells on Highly Porous Bone Hydroxyapatite Scaffold. International Journal of Immunopathology and Pharmacology, 20(4), 819-826. doi:10.1177/039463200702000418Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397-1402. doi:10.1016/j.joca.2007.05.005Vikingsson, L., Sancho-Tello, M., Ruiz-Saurí, A., Díaz, S. M., Gómez-Tejedor, J. A., Ferrer, G. G., … Ribelles, J. L. G. (2015). Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations. The International Journal of Artificial Organs, 38(12), 659-666. doi:10.5301/ijao.5000457Zan, Q., Wang, C., Dong, L., Cheng, P., & Tian, J. (2008). Effect of surface roughness of chitosan-based microspheres on cell adhesion. Applied Surface Science, 255(2), 401-403. doi:10.1016/j.apsusc.2008.06.074Zhang, C., Cai, Y., & Lin, X. (2016). One-Step Cartilage Repair Technique as a Next Generation of Cell Therapy for Cartilage Defects: Biological Characteristics, Preclinical Application, Surgical Techniques, and Clinical Developments. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 32(7), 1444-1450. doi:10.1016/j.arthro.2016.01.061Zhu, W., Chen, K., Lu, W., Sun, Q., Peng, L., Fen, W., … Zeng, Y. (2013). In vitro study of nano-HA/PLLA composite scaffold for rabbit BMSC differentiation under TGF-β1 induction. In Vitro Cellular & Developmental Biology - Animal, 50(3), 214-220. doi:10.1007/s11626-013-9699-

    Micropartículas de PLLA y CHT como andamiaje para la regeneración del cartílago articular : modelo animal.

    Get PDF
    The avascular nature of cartilaginous tissue has historically lead to bad prognosis in osteochondral injuries. One of the possible treatment options of these injuries is the use of scaffolds, being superior to other options that obtain a fibrous cartilage as a result. We have elaborated PLLA and CHT microspheres as a scaffold for the treatment of osteochondral injuries carried out in albine New Zealand rabbits. They were distributed into groups with different proportions of microspheres, having also a control group with untreated injuries. Native cartilage of the contralateral knees was also analysed. Samples were evaluated in order to establish the quality of the cartilage obtained (using de macroscopic ICRS, microscopic ICRS II scales and a histomorphometric study).The groups with microspheres obtained a regeneration cartilage with hyaline characteristics, a good cell distribution and regular surface. The control group resulted in a cartilage with worse organization and an irregular surface

    Effectiveness of a clinical practice guideline implementation strategy for patients with anxiety disorders in primary care: cluster randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anxiety is a common mental health problem seen in primary care. However, its management in clinical practice varies greatly. Clinical practice guidelines (CPGs) have the potential to reduce variations and improve the care received by patients by promoting interventions of proven benefit. However, uptake and adherence to their recommendations can be low.</p> <p>Method/design</p> <p>This study involves a community based on cluster randomized trial in primary healthcare centres in the Madrid Region (Spain). The project aims to determine whether the use of implementation strategy (including training session, information, opinion leader, reminders, audit, and feed-back) of CPG for patients with anxiety disorders in primary care is more effective than usual diffusion.</p> <p>The number of patients required is 296 (148 in each arm), all older than 18 years and diagnosed with generalized anxiety disorder, panic disorder, and panic attacks by the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV). They are chosen by consecutive sampling.</p> <p>The main outcome variable is the change in two or more points into Goldberg anxiety scale at six and twelve months. Secondary outcome variables include quality of life (EuroQol 5D), and degree of compliance with the CPG recommendations on treatment, information, and referrals to mental health services. Main effectiveness will be analyzed by comparing the patients percentage improvement on the Goldberg scale between the intervention group and the control group. Logistic regression with random effects will be used to adjust for prognostic factors. Confounding factors or factors that might alter the effect recorded will be taken into account in this analysis.</p> <p>Discussion</p> <p>There is a need to identify effective implementation strategies for CPG for the management of anxiety disorders present in primary care. Ensuring the appropriate uptake of guideline recommendations can reduce clinical variation and improve the care patients receive.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN83365316">ISRCTN83365316</a></p

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Get PDF
    It is largely unknown how South America’s Andean forests affect the global carbon cycle, and thus regulate climate change. Here, we measure aboveground carbon dynamics over the past two decades in 119 monitoring plots spanning a range of >3000 m elevation across the subtropical and tropical Andes. Our results show that Andean forests act as strong sinks for aboveground carbon (0.67 ± 0.08 Mg C ha−1 y−1) and have a high potential to serve as future carbon refuges. Aboveground carbon dynamics of Andean forests are driven by abiotic and biotic factors, such as climate and size-dependent mortality of trees. The increasing aboveground carbon stocks offset the estimated C emissions due to deforestation between 2003 and 2014, resulting in a net total uptake of 0.027 Pg C y−1. Reducing deforestation will increase Andean aboveground carbon stocks, facilitate upward species migrations, and allow for recovery of biomass losses due to climate change.Fil: Duque, Alvaro. Universidad Nacional de Colombia; ColombiaFil: Peña, Miguel A.. Universidad Nacional de Colombia; ColombiaFil: Cuesta, Francisco. Universidad de Las Américas; EcuadorFil: González Caro, Sebastián. Universidad Nacional de Colombia; ColombiaFil: Kennedy, Peter. University of Minnesota; Estados UnidosFil: Phillips, Oliver L.. University of Leeds; Reino UnidoFil: Calderón Loor, Marco. Universidad de Las Américas; EcuadorFil: Blundo, Cecilia Mabel. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Carilla, Julieta. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Cayola, Leslie. Missouri Botanical Garden; Estados UnidosFil: Farfán Ríos, William. Washington University in St. Louis; Estados UnidosFil: Fuentes, Alfredo. Missouri Botanical Garden; Estados UnidosFil: Grau, Hector Ricardo. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Homeier, Jürgen. Universität Göttingen; AlemaniaFil: Loza-Rivera, María I.. Missouri Botanical Garden; Estados UnidosFil: Malhi, Yadvinder. University of Oxford; Reino UnidoFil: Malizia, Agustina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Malizia, Lucio Ricardo. Universidad Nacional de Jujuy; ArgentinaFil: Martínez Villa, Johanna A.. Université du Québec a Montreal; CanadáFil: Myers, Jonathan A.. Washington University in St. Louis; Estados UnidosFil: Osinaga Acosta, Oriana. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Peralvo, Manuel. No especifíca;Fil: Pinto, Esteban. No especifíca;Fil: Saatchi, Sassan. Jet Propulsion Laboratory; Estados UnidosFil: Silman, Miles. Center For Energy, Environment And Sustainability; Estados UnidosFil: Tello, J. Sebastián. Missouri Botanical Garden; Estados UnidosFil: Terán Valdez, Andrea. No especifíca;Fil: Feeley, Kenneth J.. University of Miami; Estados Unido

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Get PDF
    It is largely unknown how South America’s Andean forests affect the global carbon cycle, and thus regulate climate change. Here, we measure aboveground carbon dynamics over the past two decades in 119 monitoring plots spanning a range of >3000 m elevation across the subtropical and tropical Andes. Our results show that Andean forests act as strong sinks for aboveground carbon (0.67 ± 0.08 Mg C ha−1 y−1) and have a high potential to serve as future carbon refuges. Aboveground carbon dynamics of Andean forests are driven by abiotic and biotic factors, such as climate and size-dependent mortality of trees. The increasing aboveground carbon stocks offset the estimated C emissions due to deforestation between 2003 and 2014, resulting in a net total uptake of 0.027 Pg C y−1. Reducing deforestation will increase Andean aboveground carbon stocks, facilitate upward species migrations, and allow for recovery of biomass losses due to climate change.Fil: Duque, Alvaro. Universidad Nacional de Colombia; ColombiaFil: Peña, Miguel A.. Universidad Nacional de Colombia; ColombiaFil: Cuesta, Francisco. Universidad de Las Américas; EcuadorFil: González Caro, Sebastián. Universidad Nacional de Colombia; ColombiaFil: Kennedy, Peter. University of Minnesota; Estados UnidosFil: Phillips, Oliver L.. University of Leeds; Reino UnidoFil: Calderón Loor, Marco. Universidad de Las Américas; EcuadorFil: Blundo, Cecilia Mabel. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Carilla, Julieta. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Cayola, Leslie. Missouri Botanical Garden; Estados UnidosFil: Farfán Ríos, William. Washington University in St. Louis; Estados UnidosFil: Fuentes, Alfredo. Missouri Botanical Garden; Estados UnidosFil: Grau, Hector Ricardo. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Homeier, Jürgen. Universität Göttingen; AlemaniaFil: Loza-Rivera, María I.. Missouri Botanical Garden; Estados UnidosFil: Malhi, Yadvinder. University of Oxford; Reino UnidoFil: Malizia, Agustina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Malizia, Lucio Ricardo. Universidad Nacional de Jujuy; ArgentinaFil: Martínez Villa, Johanna A.. Université du Québec a Montreal; CanadáFil: Myers, Jonathan A.. Washington University in St. Louis; Estados UnidosFil: Osinaga Acosta, Oriana. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Peralvo, Manuel. No especifíca;Fil: Pinto, Esteban. No especifíca;Fil: Saatchi, Sassan. Jet Propulsion Laboratory; Estados UnidosFil: Silman, Miles. Center For Energy, Environment And Sustainability; Estados UnidosFil: Tello, J. Sebastián. Missouri Botanical Garden; Estados UnidosFil: Terán Valdez, Andrea. No especifíca;Fil: Feeley, Kenneth J.. University of Miami; Estados Unido
    corecore