13 research outputs found
Short Fiber Reinforced Thermoplastics: Prediction of Stiffness in Injection Molded PS-PPO Blends
The prediction of stiffness in short fiber reinforced thermoplastics is stud ied as a function of fiber length using injection molded blends of PS and PPO. The theoret ical models for predicting composite stiffness are reviewed. The results are first compared with the theoretical models advanced for uniaxially aligned composites. These models predict higher than experimental values. However, agreement between the predictions and experimental values improves when the effect of fiber orientation distribution in the injec tion molded samples is taken into account and as the ductility (or the PPO content) of the matrix increases. Cox's model when used with the "laminate analogy" gives the closest prediction to the experimental stiffness. Reinforcement efficiency factor for stiffness is a strong function of retained fiber lengths. The dependence of composite stiffness on the matrix ductility and the effects of compatibility on the mechanical properties of PS-PPO blend system are also discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68613/2/10.1177_089270579100400205.pd
Hyperresponsiveness to inhaled but not intravenous methacholine during acute respiratory syncytial virus infection in mice
BACKGROUND: To characterise the acute physiological and inflammatory changes induced by low-dose RSV infection in mice. METHODS: BALB/c mice were infected as adults (8 wk) or weanlings (3 wk) with 1 × 10(5 )pfu of RSV A2 or vehicle (intranasal, 30 μl). Inflammation, cytokines and inflammatory markers in bronchoalveolar lavage fluid (BALF) and airway and tissue responses to inhaled methacholine (MCh; 0.001 – 30 mg/ml) were measured 5, 7, 10 and 21 days post infection. Responsiveness to iv MCh (6 – 96 μg/min/kg) in vivo and to electrical field stimulation (EFS) and MCh in vitro were measured at 7 d. Epithelial permeability was measured by Evans Blue dye leakage into BALF at 7 d. Respiratory mechanics were measured using low frequency forced oscillation in tracheostomised and ventilated (450 bpm, flexiVent) mice. Low frequency impedance spectra were calculated (0.5 – 20 Hz) and a model, consisting of an airway compartment [airway resistance (Raw) and inertance (Iaw)] and a constant-phase tissue compartment [coefficients of tissue damping (G) and elastance (H)] was fitted to the data. RESULTS: Inflammation in adult mouse BALF peaked at 7 d (RSV 15.6 (4.7 SE) vs. control 3.7 (0.7) × 10(4 )cells/ml; p < 0.001), resolving by 21 d, with no increase in weanlings at any timepoint. RSV-infected mice were hyperresponsive to aerosolised MCh at 5 and 7 d (PC(200 )Raw adults: RSV 0.02 (0.005) vs. control 1.1 (0.41) mg/ml; p = 0.003) (PC(200 )Raw weanlings: RSV 0.19 (0.12) vs. control 10.2 (6.0) mg/ml MCh; p = 0.001). Increased responsiveness to aerosolised MCh was matched by elevated levels of cysLT at 5 d and elevated VEGF and PGE(2 )at 7 d in BALF from both adult and weanling mice. Responsiveness was not increased in response to iv MCh in vivo or EFS or MCh challenge in vitro. Increased epithelial permeability was not detected at 7 d. CONCLUSION: Infection with 1 × 10(5 )pfu RSV induced extreme hyperresponsiveness to aerosolised MCh during the acute phase of infection in adult and weanling mice. The route-specificity of hyperresponsiveness suggests that epithelial mechanisms were important in determining the physiological effects. Inflammatory changes were dissociated from physiological changes, particularly in weanling mice
intelligence
Objective: This study aimed to evaluate the sociodemographic features of the juvenile offenders and their families, the characteristics of the crime and the relationship between criminal behavior and intelligence in a group of teens that were referred to a university hospital for forensic evaluation regarding Turkish penal code article 31/2, by legal forces. Methods: This study was carried out by the retrospective assessment of medical records of children and adolescents that were referred to Pamukkale University Medical School Child and Adolescent Psychiatry Department for forensic evaluation regarding Turkish penal code article 31/2 by legal authorities between the dates 01.07.2009 and 30.06.2013. Sociodemographic features of the cases and their families, WISC-R (Wechsler Intelligence Scale for Children-revised) results, clinical assessment results and data regarding the legal process were derived from the legal file records of the cases. Results: Of the cases, 91.3% (n=116) were male while 8.7% (n=11) were female. A total of 127 children were convicted of 167 crimes in total and the most common committed crimes were offences against property while offences against physical integrity came in the second. Via clinical evaluation, it was determined that 65.4% of the cases (n=83) had normal intellectual capacity. Of the cases, 26.8% (n=34) had borderline intellectual functioning while 7.8% (n=10) had some type of mental retardation. Repeat offenders had statistically lower average verbal IQ scores compared to one-time offenders. Discussion: It is remarkable that delinquent children have frequently common problem areas such as limited intellectual capacity, socioeconomic difficulties and low educational backgrounds for both the cases and their families. It seems necessary to determine the requirements of children under risk and taking precautions and providing support in relation to this, to successfully decrease the rates of child delinquency
Differential Immune Responses and Pulmonary Pathophysiology Are Induced by Two Different Strains of Respiratory Syncytial Virus
In this study we performed comparisons of pulmonary responses between two different respiratory syncytial virus (RSV) antigenic subgroup A strains, A2 and Line 19. Line 19 strain induced significant dose-responsive airway hyperreactivity (AHR) in BALB/c mice at days 6 and 9 after infection, whereas the A2 strain induced no AHR at any dose. Histological examination indicated that A2 induced no goblet cell hyper/metaplasia, whereas the Line 19 induced goblet cell expansion and significant increases in gob5 and MUC5AC mRNA and protein levels in vivo. When examining cytokine responses, A2 strain induced significant interleukin (IL)-10 expression, whereas Line 19 strain induced significant IL-13 expression. When IL-13(−/−) mice were infected with Line 19 RSV, the AHR responses were abrogated along with gob5 gene expression. There was little difference in viral titer throughout the infection between the line 19- and A2-infected mice. However, the A2 strain grew to significantly higher titers than the Line 19 strain in HEp-2 cells in vitro. Thus, RSV Line 19-induced airway dysfunction does not correlate with viral load in vivo. These data demonstrate that different RSV strains of the same antigenic subgroup can elicit differential immune responses that impact the phenotypic expression of RSV-induced illness
IL-17–Induced Pulmonary Pathogenesis during Respiratory Viral Infection and Exacerbation of Allergic Disease
Severe respiratory syncytial virus (RSV) infections are characterized by airway epithelial cell damage, mucus hypersecretion, and Th2 cytokine production. Less is known about the role of IL-17. We observed increased IL-6 and IL-17 levels in tracheal aspirate samples from severely ill infants with RSV infection. In a mouse model of RSV infection, time-dependent increases in pulmonary IL-6, IL-23, and IL-17 expression were observed. Neutralization of IL-17 during infection and observations from IL-17−/− knockout mice resulted in significant inhibition of mucus production during RSV infection. RSV-infected animals treated with anti-IL-17 had reduced inflammation and decreased viral load, compared with control antibody-treated mice. Blocking IL-17 during infection resulted in significantly increased RSV-specific CD8 T cells. Factors associated with CD8 cytotoxic T lymphocytes, T-bet, IFN-γ, eomesodermin, and granzyme B were significantly up-regulated after IL-17 blockade. Additionally, in vitro analyses suggest that IL-17 directly inhibits T-bet, eomesodermin, and IFN-γ in CD8 T cells. The role of IL-17 was also investigated in RSV-induced exacerbation of allergic airway responses, in which neutralization of IL-17 led to a significant decrease in the exacerbated disease, including reduced mucus production and Th2 cytokines, with decreased viral proteins. Taken together, our data demonstrate that IL-17 plays a pathogenic role during RSV infections
Live Attenuated B. pertussis BPZE1 Rescues the Immune Functions of Respiratory Syncytial Virus Infected Human Dendritic Cells by Promoting Th1/Th17 Responses
Respiratory Syncytial virus (RSV) is the leading cause of acute lower respiratory tract viral infection in young children and a major cause of winter hospitalization. Bordetella pertussis is a common cause of bacterial lung disease, affecting a similar age group. Although vaccines are available for B. pertussis infection, disease rates have recently increased in many countries. We have therefore developed a novel live attenuated B. pertussis strain (BPZE1), which has recently undergone a successful clinical phase I trial. In mice, BPZE1 provides protection against disease caused by respiratory viral challenge. Here, we analyze the effect of BPZE1 on antiviral T cell responses induced by human monocyte-derived dendritic cells (MDDC). We found that BPZE1 influences antiviral immune responses at several levels, enhancing MDDC maturation, IL-12p70 production, and shifting T cell cytokine profile towards a Th1/Th17 pattern. These data were supported by the intracellular signaling analysis. RSV infection of MDDC caused MyD88-independent STAT1 phosphorylation, whereas BPZE1 activated MyD88-dependent signaling pathways; co-infection caused both pathways to be activated. These findings suggest that BPZE1 given during infancy might improve the course and outcome of viral lung disease in addition to providing specific protection against B. pertussis infection