1,973 research outputs found
Broadening of HO rotational lines by collision with He atoms at low temperature
We report pressure broadening coefficients for the 21 electric-dipole
transitions between the eight lowest rotational levels of ortho-HO and
para-HO molecules by collisions with He at temperatures from 20 to 120 K.
These coefficients are derived from recently published experimental
state-to-state rate coefficients for HO:He inelastic collisions, plus an
elastic contribution from close coupling calculations. The resulting
coefficients are compared to the available experimental data. Mostly due to the
elastic contribution, the pressure broadening coefficients differ much from
line to line, and increase markedly at low temperature. The present results are
meant as a guide for future experiments and astrophysical observations.Comment: 2 figures, 2 table
How different Fermi surface maps emerge in photoemission from Bi2212
We report angle-resolved photoemission spectra (ARPES) from the Fermi energy
() over a large area of the () plane using 21.2 eV and 32 eV
photons in two distinct polarizations from an optimally doped single crystal of
BiSrCaCuO (Bi2212), together with extensive
first-principles simulations of the ARPES intensities. The results display a
wide-ranging level of accord between theory and experiment and clarify how
myriad Fermi surface (FS) maps emerge in ARPES under various experimental
conditions. The energy and polarization dependences of the ARPES matrix element
help disentangle primary contributions to the spectrum due to the pristine
lattice from those arising from modulations of the underlying tetragonal
symmetry and provide a route for separating closely placed FS sheets in low
dimensional materials.Comment: submitted to PR
Mixing Effects in the Crystallization of Supercooled Quantum Binary Liquids
By means of Raman spectroscopy of liquid microjets we have investigated the
crystallization process of supercooled quantum liquid mixtures composed of
parahydrogen (pH) diluted with small amounts of up to 5\% of either neon or
orthodeuterium (oD), and of oD diluted with either Ne or pH. We
show that the introduction of Ne impurities affects the crystallization
kinetics in both the pH-Ne and oD-Ne mixtures in terms of a significant
reduction of the crystal growth rate, similarly to what found in our previous
work on supercooled pH-oD liquid mixtures [M. K\"uhnel et {\it al.},
Phys. Rev. B \textbf{89}, 180506(R) (2014)]. Our experimental results, in
combination with path-integral simulations of the supercooled liquid mixtures,
suggest in particular a correlation between the measured growth rates and the
ratio of the effective particle sizes originating from quantum delocalization
effects. We further show that the crystalline structure of the mixture is also
affected to a large extent by the presence of the Ne impurities, which likely
initiate the freezing process through the formation of Ne crystallites.Comment: 19 pages, 7 figures, submitted to J. Chem. Phy
Inelastic collisions in molecular nitrogen at low temperature (2<T<50 K)
Theory and experiment are combined in a novel approach aimed at establishing a set of two-body state-to-state rates for elementary processes ij->lm in low temperature N2:N2 collisions involving the rotational states i, j, l, m. First, a set of 148 collision cross sections is calculated as a function of the collision energy at the converged close-coupled level via the MOLSCAT code, using a recent potential energy surface for N2–N2. Then, the corresponding rates for the range of 2<T<50 K are derived from the cross sections. The link between theory and experiment, aimed at assessing the calculated rates, is a master equation which accounts for the time evolution of rotational populations in a reference volume of gas in terms of the collision rates. In the experiment, the evolution of rotational populations is measured by Raman spectroscopy in a tiny reference volume 2E-3 mm3 of N2 traveling along the axis of a supersonic jet. The calculated collisional rates are assessed experimentally in the range of 4<T<35 K by means of the master equation, and then are scaled by averaging over a large set of experimental data. The scaled rates account accurately for the evolution of the rotational populations measured in a wide range of conditions. Accuracy of 10%
is estimated for the main scaled rates.This work has been supported by the Spanish Ministerio de Educación y Ciencia, research Project Nos. FIS2004-02576, HF2004-232, ESP2004-21060-E, and ASTROCAM network. J.P.F. is indebted to the CSIC for an I3P grant.Peer reviewe
ACORDE a Cosmic Ray Detector for ALICE
ACORDE is one of the ALICE detectors, presently under construction at CERN.
It consists of an array of plastic scintillator counters placed on the three
upper faces of the ALICE magnet. It will act as a cosmic ray trigger, and,
together with other ALICE sub-detectors, will provide precise information on
cosmic rays with primary energies around eV. Here we
describe the design review of ACORDE along with the present status and
integration into ALICE.Comment: 2 pages, 2 figures. Conference Proceeding of the X Pisa Meeting on
Advanced Detectors, to be published in a special issue of Nuclear Instruments
and Method
Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency
To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats
Solidification of small para-H2 clusters at zero temperature
We have determined the ground-state energies of para-H clusters at zero
temperature using the diffusion Monte Carlo method. The liquid or solid
character of each cluster is investigated by restricting the phase through the
use of proper importance sampling. Our results show inhomogeneous
crystallization of clusters, with alternating behavior between liquid and solid
phases up to N=55. From there on, all clusters are solid. The ground-state
energies in the range N=13--75 are established and the stable phase of each
cluster is determined. In spite of the small differences observed between the
energy of liquid and solid clusters, the corresponding density profiles are
significantly different, feature that can help to solve ambiguities in the
determination of the specific phase of H clusters.Comment: 17 pages, accepted for publication in J. Phys. Chem.
Experimental study of the incoherent spectral weight in the photoemission spectra of the misfit cobaltate [Bi2Ba2O4][CoO2]2
Previous ARPES experiments in NaxCoO2 reported both a strongly renormalized
bandwidth near the Fermi level and moderately renormalized Fermi velocities,
leaving it unclear whether the correlations are weak or strong and how they
could be quantified. We explain why this situation occurs and solve the problem
by extracting clearly the coherent and incoherent parts of the band crossing
the Fermi level. We show that one can use their relative weight to estimate
self-consistently the quasiparticle weight Z, which turns out to be very small
Z=0.15 +/- 0.05. We suggest this method could be a reliable way to study the
evolution of correlations in cobaltates and for comparison with other strongly
correlated systems
- …