1,271 research outputs found
From Re-Emergence to Hyperendemicity: The Natural History of the Dengue Epidemic in Brazil
The spread of dengue virus is a major public health problem. Though the burden of dengue has historically been concentrated in Southeast Asian countries, Brazil has become the country that reports the largest number of cases in the world. While prior to 2007 the disease affected mostly adults, during the 2007 epidemic the number of dengue hemorrhagic fever cases more than doubled, and over 53% of cases were in children under 15 years of age. In this paper, we propose that the conditions for the shift were being set gradually since the re-introduction of dengue in 1986 and that they represent the transition from re-emergence to hyperendemicity. Using data from an age stratified seroprevalence study conducted in Recife, we estimated the force of infection (a measure of transmission intensity) between 1986–2006 and used these estimates to simulate the accumulation of immunity since the re-emergence. As the length of time that dengue has circulated increases, adults have a lower probability of remaining susceptible to primary or secondary infection and thus, cases become on average younger. If in fact the shift represents the transition from re-emergence to hyperendemicity, similar shifts are likely to be observed in the rest of Brazil, the American continent and other regions where transmission emerges
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
cDNA cloning and functional expression of the α-d-galactose-binding lectin frutalin in escherichia coli
cDNA clones encoding frutalin, the α-d-galactose-binding lectin expressed in breadfruit seeds (Artocarpus incisa), were isolated and sequenced. The deduced amino acid sequences indicated that frutalin may be encoded by a family of genes. The NCBI database searches revealed that the frutalin sequence is highly homologous with jacalin and mornigaG sequences. Frutalin cDNA was re-amplified and cloned into the commercial expression vector pET-25b(+) for frutalin production in Escherichia coli. An experimental factorial design was employed to maximise the soluble expression of the recombinant lectin. The results indicated that temperature, time of induction, concentration of IPTG and the interaction between the concentration of IPTG and the time of induction had the most significant effects on the soluble expression level of recombinant frutalin. The optimal culture conditions were as follows: induction with 1 mM IPTG at 22°C for 20 h, yielding 16 mg/l of soluble recombinant frutalin. SDS-PAGE and Western blot analysis revealed that recombinant frutalin was successfully expressed by bacteria with the expected molecular weight (17 kDa). These analyses also showed that recombinant frutalin was mainly produced as insoluble protein. Recombinant frutalin produced by bacteria revealed agglutination properties and carbohydrate-binding specificity similar to the native breadfruit lectin.Fundação para a Ciência e a Tecnologia (FCT
Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study
Prostate cancer is the most common cancer in men in developed countries, and is a target for risk reduction strategies. The effects of alcohol consumption on prostate cancer incidence and survival remain unclear, potentially due to methodological limitations of observational studies. In this study, we investigated the associations of genetic variants in alcohol-metabolising genes with prostate cancer incidence and survival. We analysed data from 23,868 men with prostate cancer and 23,051 controls from 25 studies within the international PRACTICAL Consortium. Study-specific associations of 68 single nucleotide polymorphisms (SNPs) in 8 alcohol-metabolising genes (Alcohol Dehydrogenases (ADHs) and Aldehyde Dehydrogenases (ALDHs)) with prostate cancer diagnosis and prostate cancer-specific mortality, by grade, were assessed using logistic and Cox regression models, respectively. The data across the 25 studies were meta-analysed using fixed-effect and random-effects models. We found little evidence that variants in alcohol metabolising genes were associated with prostate cancer diagnosis. Four variants in two genes exceeded the multiple testing threshold for associations with prostate cancer mortality in fixed-effect meta-analyses. SNPs within ALDH1A2 associated with prostate cancer mortality were rs1441817 (fixed effects hazard ratio, HRfixed = 0.78; 95% confidence interval (95%CI):0.66,0.91; p values = 0.002); rs12910509, HRfixed = 0.76; 95%CI:0.64,0.91; p values = 0.003); and rs8041922 (HRfixed = 0.76; 95%CI:0.64,0.91; p values = 0.002). These SNPs were in linkage disequilibrium with each other. In ALDH1B1, rs10973794 (HRfixed = 1.43; 95%CI:1.14,1.79; p values = 0.002) was associated with prostate cancer mortality in men with low-grade prostate cancer. These results suggest that alcohol consumption is unlikely to affect prostate cancer incidence, but it may influence disease progression
The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: the third musketeer
<p>Abstract</p> <p>Background</p> <p>Chagas disease has a diverse pathology caused by the parasite <it>Trypanosoma cruzi</it>, and is indigenous to Central and South America. A pronounced feature of the trypanosomes is the kinetoplast, which is comprised of catenated maxicircles and minicircles that provide the transcripts involved in uridine insertion/deletion RNA editing. <it>T. cruzi </it>exchange genetic material through a hybridization event. Extant strains are grouped into six discrete typing units by nuclear markers, and three clades, A, B, and C, based on maxicircle gene analysis. Clades A and B are the more closely related. Representative clade B and C maxicircles are known in their entirety, and portions of A, B, and C clades from multiple strains show intra-strain heterogeneity with the potential for maxicircle taxonomic markers that may correlate with clinical presentation.</p> <p>Results</p> <p>To perform a genome-wide analysis of the three maxicircle clades, the coding region of clade A representative strain Sylvio X10 (a.k.a. Silvio X10) was sequenced by PCR amplification of specific fragments followed by assembly and comparison with the known CL Brener and Esmeraldo maxicircle sequences. The clade A rRNA and protein coding region maintained synteny with clades B and C. Amino acid analysis of non-edited and 5'-edited genes for Sylvio X10 showed the anticipated gene sequences, with notable frameshifts in the non-edited regions of Cyb and ND4. Comparisons of genes that undergo extensive uridine insertion and deletion display a high number of insertion/deletion mutations that are likely permissible due to the post-transcriptional activity of RNA editing.</p> <p>Conclusion</p> <p>Phylogenetic analysis of the entire maxicircle coding region supports the closer evolutionary relationship of clade B to A, consistent with uniparental mitochondrial inheritance from a discrete typing unit TcI parental strain and studies on smaller fragments of the mitochondrial genome. Gene variance that can be corrected by RNA editing hints at an unusual depth for maxicircle taxonomic markers, which will aid in the ability to distinguish strains, their corresponding symptoms, and further our understanding of the <it>T. cruzi </it>population structure. The prevalence of apparently compromised coding regions outside of normally edited regions hints at undescribed but active mechanisms of genetic exchange.</p
- …