565 research outputs found
Synthesis and Analysis of Entangled Photonic Qubits in Spatial-Parity Space
We present the novel embodiment of a photonic qubit that makes use of one
continuous spatial degree of freedom of a single photon and relies on the the
parity of the photon's transverse spatial distribution. Using optical
spontaneous parametric downconversion to produce photon pairs, we demonstrate
the controlled generation of entangled-photon states in this new space.
Specifically, two Bell states, and a continuum of their superpositions, are
generated by simple manipulation of a classical parameter, the optical-pump
spatial parity, and not by manipulation of the entangled photons themselves. An
interferometric device, isomorphic in action to a polarizing beam splitter,
projects the spatial-parity states onto an even--odd basis. This new physical
realization of photonic qubits could be used as a foundation for future
experiments in quantum information processing.Comment: 6 pages, 5 figures, submitted to PR
Experimental Violation of Bell's Inequality in Spatial-Parity Space
We report the first experimental violation of Bell's inequality in the
spatial domain using the Einstein--Podolsky--Rosen state. Two-photon states
generated via optical spontaneous parametric downconversion are shown to be
entangled in the parity of their one-dimensional transverse spatial profile.
Superpositions of Bell states are prepared by manipulation of the optical
pump's transverse spatial parity--a classical parameter. The Bell-operator
measurements are made possible by devising simple optical arrangements that
perform rotations in the one-dimensional spatial-parity space of each photon of
an entangled pair and projective measurements onto a basis of even--odd
functions. A Bell-operator value of 2.389 +- 0.016 is recorded, a violation of
the inequality by more than 24 standard deviations.Comment: 10 pages, 3 figures, 1 Tabl
Polarization-sensitive quantum-optical coherence tomography
We set forth a polarization-sensitive quantum-optical coherence tomography
(PS-QOCT) technique that provides axial optical sectioning with
polarization-sensitive capabilities. The technique provides a means for
determining information about the optical path length between isotropic
reflecting surfaces, the relative magnitude of the reflectance from each
interface, the birefringence of the interstitial material, and the orientation
of the optical axis of the sample. PS-QOCT is immune to sample dispersion and
therefore permits measurements to be made at depths greater than those
accessible via ordinary optical coherence tomography. We also provide a general
Jones matrix theory for analyzing PS-QOCT systems and outline an experimental
procedure for carrying out such measurements.Comment: 15 pages, 5 figures, to appear in Physical Review
High-sensitivity imaging with multi-mode twin beams
Twin entangled beams produced by single-pass parametric down-conversion (PDC)
offer the opportunity to detect weak amount of absorption with an improved
sensitivity with respect to standard techniques which make use of classical
light sources. We propose a differential measurement scheme which exploits the
spatial quantum correlation of type II PDC to image a weak amplitude object
with a sensitivity beyond the standard quantum limit imposed by shot-noise.Comment: 13 pages, 8 figure
Diagnosis and outcome of oesophageal Crohn's disease
BACKGROUND AND AIMS:
Crohn's disease (CD) can involve any part of the gastrointestinal tract. We aimed to characterize clinical, endoscopic, histologic features and treatment outcomes of CD patients with oesophageal involvement.
METHODS:
We collected cases through a retrospective multicentre European Crohn's and Colitis Organisation CONFER [COllaborative Network For Exceptionally Rare case reports] project. Clinical data were recorded in a standardized case report form.
RESULTS:
A total of 40 patients were reported [22 males, mean (±SD, range) age at oesophageal CD diagnosis: 25 (±13.3, 10-71) years and mean time of follow-up: 67 (±68.1, 3-240) months]. Oesophageal involvement was established at CD diagnosis in 26 patients (65%) and during follow-up in 14. CD was exclusively located in the oesophagus in 2 patients. Thirteen patients (32.2%) were asymptomatic at oesophageal disease diagnosis. Oesophageal strictures were present in 5 patients and fistulizing oesophageal disease in one. Eight patients exhibited granulomas on biopsies. Proton-pump inhibitors (PPIs) were administered in 37 patients (92.5%). Three patients underwent endoscopic dilation for symptomatic strictures and none oesophageal-related surgery. Diagnosis in pre-established CD resulted in treatment modifications in 9/14 patients. Clinical remission of oesophageal disease was seen in 33/40 patients (82.5%) after a mean time of 7 (±5.6, 1-18) months. Follow-up endoscopy was performed in 29/40 patients and 26/29 (89.7%) achieved mucosal healing.
CONCLUSION:
In this case series the endoscopic and histologic characteristics of isolated oesophageal CD were similar to those reported in other sites of involvement. Treatment was primarily conservative, with PPIs administered in the majority of patients and modifications in pre-existing IBD-related therapy occurring in two thirds of them. Clinical and endoscopic remission was achieved in more than 80% of the patients.info:eu-repo/semantics/publishedVersio
Observation of bosonic coalescence of photon pairs
Quantum theory predicts that two indistinguishable photons incident on a
beam-splitter interferometer stick together as they exit the device (the pair
emerges randomly from one port or the other). We use a special
photon-number-resolving energy detector for a direct loophole-free observation
of this quantum-interference phenomenon. Simultaneous measurements from two
such detectors, one at each beam-splitter output port, confirm the absence of
cross-coincidences.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Modeling and simulation of heterogeneous real-time systems based on a deterministic discrete event model
Abstract In this paper, an approach to system-level modeling and simulation of a class of heterogeneous real-time systems the timing behaviour of which can be m o deled by deterministic discrete event systems is described. Examples of systems we consider are self-timed systems, synchronously clocked systems, and mixed asynchronous/synchronous systems. Our model is based on several extensions to the model of timed marked graphs. Basically, we augment this model by adding new schedule constraints such that we can express simultaneity, synchronicity, nite buering as well as arbitrary combinations of min-and max-constraints. We prove that these extensions allow ecient timing analysis and we show how to simulate realistic systems using the Ptolemy [3] design system
Synaptic Therapy in Alzheimer’s Disease: A CREB-centric Approach
Therapeutic attempts to cure Alzheimer’s disease (AD) have failed, and new strategies are desperately needed. Motivated by this reality, many laboratories (including our own) have focused on synaptic dysfunction in AD because synaptic changes are highly correlated with the severity of clinical dementia. In particular, memory formation is accompanied by altered synaptic strength, and this phenomenon (and its dysfunction in AD) has been a recent focus for many laboratories. The molecule cyclic adenosine monophosphate response element-binding protein (CREB) is at a central converging point of pathways and mechanisms activated during the processes of synaptic strengthening and memory formation, as CREB phosphorylation leads to transcription of memory-associated genes. Disruption of these mechanisms in AD results in a reduction of CREB activation with accompanying memory impairment. Thus, it is likely that strategies aimed at these mechanisms will lead to future therapies for AD. In this review, we will summarize literature that investigates 5 possible therapeutic pathways for rescuing synaptic dysfunction in AD: 4 enzymatic pathways that lead to CREB phosphorylation (the cyclic adenosine monophosphate cascade, the serine/threonine kinases extracellular regulated kinases 1 and 2, the nitric oxide cascade, and the calpains), as well as histone acetyltransferases and histone deacetylases (2 enzymes that regulate the histone acetylation necessary for gene transcription)
- …