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Abstract

In this paper, an approach to system-level modeling

and simulation of a class of heterogeneous real-time

systems the timing behaviour of which can be modeled

by deterministic discrete event systems is described.

Examples of systems we consider are self-timed sys-

tems, synchronously clocked systems, and mixed asyn-

chronous/synchronous systems. Our model is based

on several extensions to the model of timed marked

graphs. Basically, we augment this model by adding

new schedule constraints such that we can express si-

multaneity, synchronicity, �nite bu�ering as well as

arbitrary combinations of min- and max-constraints.

We prove that these extensions allow e�cient timing

analysis and we show how to simulate realistic systems

using the Ptolemy [3] design system.

1 Introduction

Whereas synthesis tools on lower levels of system

design are fairly mature, there are still many open

problems on higher levels of system design and inte-

gration. Typical problems are the synthesis of inter-

faces, hw/sw-codesign and co-simulation. The need

for heterogeneous simulation and synthesis tools for

di�erent design styles (e.g., asynchronous versus syn-

chronous computation and communication, hardware

versus software, analog versus digital) is of utmost

importance in order to obtain performance �gures

early. In case of real-time systems, exact timing and

throughput estimation is one of the major require-

ments. A model for heterogeneous real-time designs

should basically satisfy the following requirements:

� simplicity

�Part of this work was performed during a stay of the �rst

author as a postdoctoral fellow in the Department of EECS at

UC Berkeley in the Ptolemy project.

� major focus on real-time constraints, concur-

rency, and synchronization

� ease of analysis (existence of e�cient algorithms

for analysis)

� versatility and extendibility

There exist many computational models for de-

scribing real-time systems, e.g., petri net based mod-

els [11, 4, 12], CSP [7], hierarchical �nite state ma-

chines [6, 5], and block diagram oriented languages

[9, 2], to name a few. A lot of research has been done

to map a certain model to a software target e.g., a

microcontroller, a DSP processor, a general purpose

uniprocessor or a multiprocessor architecture, see e.g.,

[9]. Indeed, many results are available in this area on

�nding schedules (e.g., blocked, non-blocked, or cyclo-

static [2]) together with an assignment of given com-

putations to computing resources. Here, we are inter-

ested in modeling the performance of dedicated sys-

tems where assignment is given implicitly by dedicated

resources. We are not primarily interested in �nding a

schedule to satisfy a certain throughput rate or some

code size or communication requirements, but to an-

alyze the fastest evolving schedules (e.g., self sched-

ules) for a given assignment and communication style

between system components. Such an analysis might

be helpful, e.g., in obtaining performance �gures that

can be used for decision making in a system-level de-

sign optimization loop. Our model should be able to

take into account relevant timing aspects like latency,

throughput rates, and relevant aspects of communi-

cation including di�erent communication styles, �nite

bu�ering, and interface constraints, i.e., timing con-

straints (e.g., min-, max- constraints and relative tim-

ing constraints). Hence, we are seeking to de�ne a

model that allows e�cient timing analysis of dedicated

real-time systems.
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2 Basic computational model
2.1 Marked graphs and their unfolding

First, we introduce some notation and recall the

computational model associated with marked graphs

because this is the basis for the extensions described

in this paper. For more details, see e.g., [11, 1] and the

references therein. In the following, let N, Z, and R

denote the set of natural numbers, integers, and real

numbers, respectively.

De�nition 1 (Marked Graph) A timed marked

graph G = (V;A; d; h) denotes a directed graph with

� nodes V = fv1; v2; � � � ; vjV jg,

� arcs A = fa1; a2; � � � ; ajAjg, where any arc is an

ordered pair of nodes ap = (vi; vj),

� a distance function d : A ! Z�0 and a weight

function h : A ! R�0. We use dij and hij as

shorthand notations for d(vi; vj) and h(vi; vj) as-

sociated with edge (vi; vj).

A node of G represents a computation module.

Each arc ap = (vi; vj) represents a queue of data di-

rected from the computation module assigned to vi
to the computation module assigned to vj . Thus, the

computation module vi places the results of its calcu-

lation onto arc ap and the data on ap are available as

inputs to the computation module vj . The distances

and weights in De�nition 1 are interpreted as follows:

� dij denotes the initial number of data items (also

called tokens) on arc ap = (vi; vj).

� hij denotes the (minimum) holding time of a to-

ken in the queue associated with arc (vi; vj).

These quantities are related to the token game one

can play: If a node vi �res, then the �rst token in

all queues ending in vi are removed and simultane-

ously, one token enters all queues originating at vi.

Now, a node can �re only (but need not �re immedi-

ately) if it is enabled. A token must spend the holding

time hij in the queue from vi to vj before contributing

to the enabling of the downstream node vj . The �r-

ing of a node can't take place before all tokens in the

queues contribute to the enabling. Many other essen-

tially equivalent notions of marked graphs are possible

([12, 11, 1]).

Now, the set of all evolutions and scheduling of a

timed marked graph can be described by the (event-)

unfolding.

De�nition 2 (Unfolding) The unfolding of a timed

marked graph G = (V;A; d; h) is an in�nite directed

graph �(G) = (V�; A�; h�) where

1. V� contains nodes vi(k) for all vi 2 V and for

all integers k > �maxfdij : vj 2 V such that

(vi; vj) 2 Ag,

2. A� = f(vi(k � dij); vj(k)) : (vi; vj) 2 A ^ k 2

Z>0g,

3. to each arc in A� there is assigned the weight of

the corresponding arc in G, i.e. h� : A� ! R

with h�(vi(k � dij); vj(k)) = hij for all (vi(k �

dij); vj(k)) 2 A�.

A node vi(k) of the unfolding represents the kth

�ring of node vi in the marked graph. An edge from

vi(k) to vj(l) denotes the fact that the lth �ring of

node vj can take place only after the kth �ring of node

vi. The nodes vi(k) for k � 0 represent the initial

conditions of the marked graph, i.e. the placement of

dij tokens into the queue corresponding to arc (vi; vj).

Now, we can describe the scheduling of a timed

marked graph more precisely. An admissible sched-

ule is de�ned as follows:

De�nition 3 (Admissible Schedule) An admissi-

ble schedule function � : V� ! R�0 satis�es:

1. �i(k) = 0 for all vi(k) 2 V�, k � 0

2. �j(k) � �i(k � dij) + hij for all (vi(k �

dij); vj(k)) 2 A�

where �(vi(k)) is written as �i(k).

Here, �i(k) denotes the time when node vi �res for the

kth time. From the interpretation of a marked graph it

should be obvious that this can take place only if the

corresponding input tokens have been in the queues

(vi; vj) for at least time hij . As these tokens originate

from the (k � dij)th �rings of nodes vi, an admissible

schedule of node vj satis�es �j(k) � �i(k� dij) + hij .

The �rst condition in De�nition 3 serves to consider

the initial timing conditions of the token game. All

initial tokens are placed into the queues at time 0.

3 Model requirements
The model of timed marked graphs is not rich

enough to describe all relevant aspects of heteroge-

neous real-time systems. Its main modeling de�cien-

cies are:

� simultaneity: It should be possible to describe

systems in which subsystems are constrained to

work simultaneously.

� synchronicity: In synchronous systems, changes

of system states can only occur simultaneous to

certain events, e.g., edges of clock signals. It



should be possible to model cases where all nodes

are clocked (= globally asynchronous/locally syn-

chronous systems), some nodes are clocked (=

mixed asynchronous/synchronous systems [13]),

or it should be possible to emulate synchronously

clocked systems as special cases.

� min- and max-constraints: In the domain of level-

sensitive circuits, nodes are enabled for compu-

tation when the �rst signal change at its inputs

arrives (= min-node) rather than after a signal

change has occured on all inputs (= max-nodes).

Moreover, one would like to describe and simulate

a system having min- as well as max-nodes.

� �nite bu�ering: Limited bu�ering capacities will

be modeled by introduction of reverse arcs in our

graph model.

� multi-rate-constraints: It should be possible to

describe di�erent �ring rates of nodes. For ex-

ample, in digital signal processing, some nodes

may consume or produce more than one output

event per computation.

In this section, we will show how the timed marked

graph model can be extended to cope with these con-

straints.

3.1 Modeling of self-timed systems

In a self-timed system with deterministic compu-

tation times, computation can be modeled by the

marked graph model as introduced in the last section.

The holding times hij therefore model the raw com-

putation time cj of the receiving node vj plus a com-

munication time wij , therefore hij = cj + wij . Finite

bu�ering capacities can be modeled by introducing re-

verse arcs and associating the communication time to

those arcs (see, e.g., Fig. 3a, where arc (v2; v1) serves

to model the constraint of a bu�er size 3 along arc

(v1; v2)).

Next, we would like to consider synchronicity con-

straints. A typical case where such constraints need

to be considered are synchronously clocked systems.

If there is such a constraint on a node in our marked

graph, we will call it a synchronous node in the follow-

ing, otherwise we call it an asynchronous node.

3.2 Modeling of mixed asynchronous{

synchronous systems

In a mixed asynchronous{synchronous system, a

synchronous node can only initiate and �nish com-

putation at the edges of clock signals. In the follow-

ing, we de�ne an extended marked graph model called

MASS (mixed asynchronous-synchronous system [13])

to include synchronicity constraints of timing events,

in particular to periodic clock signals.

De�nition 4 (MASS) A mixed asynchronous -syn-

chronous system (MASS) denotes an extended marked

graph G = (V;A; d; h; r; p). The set of nodes V is par-

titioned into disjoint subsets VA and VS , corresponding

to asynchronous and synchronous nodes, respectively.

In addition, the function r : V ! N assigns a clock

period, the function p : V ! R assigns a clock phase

0 � pi < ri to each node vi 2 V . In the unfolding

�(G), to each synchronous node vi(k) 2 V� there is

assigned the clock period ri and the clock phase pi.

Example 1 Consider the MASS in Fig. 1. Node v2
is a synchronous node with the local clock phase p2 =

0:1. Let r2 = 1 (normalized to 1).

Here, the time instances �j(k) when a synchronous

node can complete an operation are constrained as

follows:

(�j(k)� pj) � 0 mod rj (1)

This restriction is motivated by the fact that a syn-

chronous module can deliver a value at its local clock

ticks only. Therefore, the �ring of the node is delayed

until the next clock event. For asynchronous nodes,

clock period and clock phases play no role. However,

by letting ri = 1 and pi = 0 for all vi 2 VA, we can

consolidate the description of the behaviour of syn-

chronous and asynchronous nodes.

As a result, the de�nitions of admissible schedules

must be extended as follows:

De�nition 5 (Admissible Schedule) An admissi-

ble schedule function of a mixed asynchronous{

synchronous system is a function � : V� ! R�0 that

satis�es �i(k) = �i(k)
� + pi, and hij = h�ij + pj � pi

where

1. �i(k)
� = 0 for all vi(k) 2 V�, k � 0

2. �j(k)
� � Fj(�i(k � dij)

� + h�ij) for all (vi(k �

dij); vj(k)) 2 A�

The function Fj is given by

Fj(a) =

(
a : vj 2 VAl

a
rj

m
rj : vj 2 VS

In case of an asynchronous node, the same de�ni-

tion as in De�nition 3 is obtained because �j(k)
� �

Fj(�i(k � dij)
� + h�ij) is equivalent to �j(k) � �i(k �

dij)� pi + hij + pi � pj = �i(k � dij) + hij . In a self-

schedule of a synchronous node, �j(k) is divisible by
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Figure 1: Example of a mixed asynchronous{synchronous system
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Figure 2: Unfolding of the system shown in Fig. 1

rj as desired. Moreover, the synchronous node �res

at the next available clock tick. The stronger schedule

condition

�j(k) � pj +

�
�i(k � dij) + hij � pj

rj

�
rj

is identical to De�nition 5. Note that the term on

the right hand side of this inequality is always greater

than or equal to �i(k � dij) + hij but smaller than

�i(k � dij) + hij + rj , as desired.

Example 2 The same system as in Example 1 is

considered. Its unfolding is shown in Fig. 2. Syn-

chronous node v2's earliest �ring time �2(2) = 9:1 as

�1(2) + 3:5 = 8:5 has been rounded up to the next in-

teger plus p2 = 0:1.

Looking at the de�nition of an unfolding, it is ob-

vious that one possible maximal{rate schedule is ob-

tained if a node �res as soon as it is enabled. This fact

is elaborated in the following theorem.

Theorem 1 (Free Schedule) The following condi-

tions for the free schedule of a MASS are equivalent:

1. There is no admissible schedule with smaller �r-

ing times �i(k).

2. �j(k)
� = maxf0; Fj(�i(k � dij)

� + h�ij) : (vi(k �

dij); vj(k)) 2 A�g

The free schedule is a maximal{rate schedule.

In [13], we have shown for the case of single-clock

rate MASS, i.e., for the case rj = 1 8vj 2 VS , the

maximal{rate can be determined accurately in polyno-

mial time for special cases, e.g., for the cases V = VA
(self-timed systems), V = VS (globally asynchronous,

locally synchronous systems). In De�nition 4, how-

ever, we consider the more general case when arbitrary

combinations of asynchronous and synchronous nodes

with possibly di�erent clock periods.

3.3 Modeling of synchronous systems

Let a synchronous node stand for a signal 
ow

graph (SFG) [10] in another level of hierarchy. The in-


uence of retiming and pipelining can be easily incor-

porated into the MASS model by changing the compu-

tation times and node rates. However, there are also

many possibilities to model a synchronous system by

a MASS. For example, if only the sequence of opera-

tions is of concern, one may simply replace the regis-

ters by initial tokens and the combinational modules

by asynchronous nodes of a marked graph. Another

possibility is shown in Figs. 3b,c : The synchronous

registers are replaced by synchronous nodes as shown

in Fig. 3b. The combinational modules are modeled

using asynchronous nodes whose holding times are the

delays of the corresponding combinational modules,

see Fig. 3c. The timing corresponds to that of the

synchronous system if all accumulated delay times be-

tween registers are smaller than the clock period. A

model for clock generation is shown in Fig. 3d: An

extra clock node is responsible for the simultaneous
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Figure 3: Modeling �nite bu�ering (a), synchronous systems (b,c,d) and mixed asynchronous{synchronous systems

(e,f) using the MASS model

transfer of token to all synchronous nodes which model

the registers. The connection between the clock node

and the synchronous nodes is bidirectional and corre-

sponds to an interconnection with a queue length of

one. This prevents the accumulation of clock tokens

and guarantees that if the longest delay path between

two registers is larger than the clock period, the pe-

riod of the whole system is slowed down. Combina-

tional modules are modeled as in Fig. 3c. A model for

interfacing asynchronous and synchronous systems is

shown in Fig. 3e. Let node v1 belong to an asyn-

chronous subsystem whereas node v2 models the �rst

register of a synchronous subsystem. This input reg-

ister accepts tokens only at integral time instances.

The holding time h models the communication time

and the computation time of the synchronous node v2,

e.g., for executing the communication protocol. If the

asynchronous part is faster than the synchronous one,

tokens will accumulate in the queue (v1; v2). This can

be avoided by using �nite length queues, see Fig. 3a. If

the synchronous part is slower, the synchronous node

v2 does not process a token every clock tick, but all

other nodes in the synchronous subsystem do. This

behavior can be implemented in hardware by send-

ing a token{bit along with all data in the synchronous

subsystem which signals that a register contains valid

data. The clock operates continuously. Another possi-

bility is shown in Fig. 3f. Here, the concept of a global

clock node is used again. The incoming token is split

into one which represents the data and the other one

which serves to enable the clock signal. This corre-

sponds to realizations with stoppable clocks.

4 Simulation in Ptolemy

We want to simulate self-schedules of our extended

times marked graphs (e.g., MASS) that can be char-

acterized by a set of equations of the form:

�j(k) = Fj(� � � ; �i(k � dij); � � �) 8k � 0 (2)

where Fj() 2 fmax();min(); dmax()e; dmin()eg.

Ptolemy [3] is a design environment for the design and

simulation of heterogeneous systems. In one of its do-

mains, the system contains a marked-graph scheduler

(homogeneous SDF, see [9]). Now, to �nish our idea

of simulation, we de�ne an isomorphic conventional

(untimed) marked graph in Ptolemy with one node vj
for each equation and the node function given by Fj .

Hence, the speci�c schedule constraints (synchronous,

min, etc.) are hidden in the node functionality. Fi-

nally, any admissible schedule of this marked graph

by de�nition has to wait for all arguments of the node

function (tokens of incoming arcs) to exist. Hence, if

vj �res for the kth time, it computes �j(k) correctly,

and outputs this token value to neighbor nodes:

Theorem 2 (Correct Simulation) Any admissab-

le marked graph schedule correctly computes the set of

equations in (2).



Figure 4: Example of a MASS simulated in Ptolemy

Hence, e�cient simulation of our extended systems is

obvious through the reduction to the computation of

an arbitrary periodic schedule of a marked graph.

Fig. 4 shows the MASS of Fig. 1 in Ptolemy and

a simulation window that displays the simulated node

�re events of its self-schedule.

5 Extensions
Due to space requirements, we can only mention

in a few words how our model can also cope with

simultaneity and multi-rate constraints: The simul-

taneity of node �ring times may be expressed by clus-

tering nodes together into a supernode. Finally, we

could model nodes consuming (or producing) di�erent

amounts of tokens by using the multi-rate SDF model

[9] while keeping all mentioned timing constraints. Ar-

bitrary combinations can be thought of, e.g., a syn-

chronous multi-rate min- node. The formal analysis

of such systems is subject of ongoing research. We

claim that our ideas might be an important step to-

wards timing simulation and system-level modeling of

dedicated heterogeneous real-time systems.
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