264 research outputs found

    The Self-Calibrating Hubble Diagram

    Full text link
    As an increasing number of well measured type Ia supernovae (SNe Ia) become available, the statistical uncertainty on w has been reduced to the same size as the systematic uncertainty. The statistical error will decrease further in the near future, and hence the improvement of systematic uncertainties needs to be addressed, if further progress is to be made. We study how uncertainties in the primary reference spectrum - which are a main contribution to the systematic uncertainty budget - affect the measurement of the Dark Energy equation of state parameter w from SNe Ia. The increasing number of SN observations can be used to reduce the uncertainties by including perturbations of the reference spectrum as nuisance parameters in a cosmology fit, thus "self-calibrating" the Hubble diagram. We employ this method to real SNe data for the first time and find the perturbations of the reference spectrum consistent with zero at the 1%-level. For future surveys we estimate that ~3500 SNe will be required for our method to outperform the standard method of deriving the cosmological parameters.Comment: 17 pages, 8 figures, 1 table. Update to revised version accepted for publication in JCA

    Scanning electron microscopy image representativeness: morphological data on nanoparticles.

    Get PDF
    A sample of a nanomaterial contains a distribution of nanoparticles of various shapes and/or sizes. A scanning electron microscopy image of such a sample often captures only a fragment of the morphological variety present in the sample. In order to quantitatively analyse the sample using scanning electron microscope digital images, and, in particular, to derive numerical representations of the sample morphology, image content has to be assessed. In this work, we present a framework for extracting morphological information contained in scanning electron microscopy images using computer vision algorithms, and for converting them into numerical particle descriptors. We explore the concept of image representativeness and provide a set of protocols for selecting optimal scanning electron microscopy images as well as determining the smallest representative image set for each of the morphological features. We demonstrate the practical aspects of our methodology by investigating tricalcium phosphate, Ca3 (PO4 )2 , and calcium hydroxyphosphate, Ca5 (PO4 )3 (OH), both naturally occurring minerals with a wide range of biomedical applications

    On the extrapolation to ITER of discharges in present tokamaks

    Get PDF
    An expression for the extrapolated fusion gain G = Pfusion /5 Pheat (Pfusion being the total fusion power and Pheat the total heating power) of ITER in terms of the confinement improvement factor (H) and the normalised beta (betaN) is derived in this paper. It is shown that an increase in normalised beta can be expected to have a negative or neutral influence on G depending on the chosen confinement scaling law. Figures of merit like H betaN / q95^2 should be used with care, since large values of this quantity do not guarantee high values of G, and might not be attainable with the heating power installed on ITER.Comment: 6 Pages, 3 figures, Submitted to Nuclear Fusion on the 29th of November 200

    The Standard Cosmological Model

    Full text link
    The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a non-deterministic aspect.Comment: 16 pages, 2 figures, invited talk at "Theory Canada 1", June 2005, Vancouve

    M-flation: Inflation From Matrix Valued Scalar Fields

    Full text link
    We propose an inflationary scenario, M-flation, in which inflation is driven by three N×NN\times N hermitian matrices Φi,i=1,2,3\Phi_i, i=1,2,3. The inflation potential of our model, which is strongly motivated from string theory, is constructed from Φi\Phi_{i} and their commutators. We show that one can consistently restrict the classical dynamics to a sector in which the Φi\Phi_i are proportional to the N×NN\times N irreducible representations of SU(2). In this sector our model effectively behaves as an N-flation model with 3N23 N^2 number of fields and the effective inflaton field has a super-Planckian field value. Furthermore, the fine-tunings associated with unnaturally small couplings in the chaotic type inflationary scenarios are removed. Due to the matrix nature of the inflaton fields there are 3N213N^2-1 extra scalar fields in the dynamics. These have the observational effects such as production of iso-curvature perturbations on cosmic microwave background. Moreover, the existence of these extra scalars provides us with a natural preheating mechanism and exit from inflation. As the effective inflaton field can traverse super-Planckian distances in the field space, the model is capable of producing a considerable amount of gravity waves that can be probed by future CMB polarization experiments such as PLANCK, QUIET and CMBPOL.Comment: minor changes, the counting of the alpha and beta modes are corrected, references adde

    The Planck-LFI flight model composite waveguides

    Get PDF
    The Low Frequency Instrument on board the PLANCK satellite is designed to give the most accurate map ever of the CMB anisotropy of the whole sky over a broad frequency band spanning 27 to 77 GHz. It is made of an array of 22 pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between the two parts is made with rectangular Wave Guides. Considerations of different nature (thermal, electromagnetic and mechanical), imposed stringent requirements on the WGs characteristics and drove their design. From the thermal point of view, the WG should guarantee good insulation between the FEM and the BEM sections to avoid overloading the cryocooler. On the other hand it is essential that the signals do not undergo excessive attenuation through the WG. Finally, given the different positions of the FEM modules behind the focal surface and the mechanical constraints given by the surrounding structures, different mechanical designs were necessary. A composite configuration of Stainless Steel and Copper was selected to satisfy all the requirements. Given the complex shape and the considerable length (about 1.5-2 m), manufacturing and testing the WGs was a challenge. This work deals with the development of the LFI WGs, including the choice of the final configuration and of the fabrication process. It also describes the testing procedure adopted to fully characterize these components from the electromagnetic point of view and the space qualification process they underwent. Results obtained during the test campaign are reported and compared with the stringent requirements. The performance of the LFI WGs is in line with requirements, and the WGs were successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Development of Faraday-cup-based Fast Ion Loss Detector in Wendelstein 7-X

    Get PDF
    A study on fast-ion losses due to magnetic field ripples and fast-ion-drivenmagnetohydrodynamic (MHD) modes is important in terms of view of research on fusion-born alpha losses in fusion devices. To understand fast-ion loss in Wendelstein 7-X (W7-X) plasmas, installation of fast-ion loss diagnostics for W7-X has been planned. For the Op1.2b campaign, the prototype Faraday-cup-based fast-ion loss detector (FILD) has been designed as joint cooperative project between National Institute for Fusion Science and Max Planck Institute for Plasma Physics. The Faraday-cup-based FILD is relatively cost-effective in construction compared with a scintillator-type FILD. The FILD is capable of providing the flux, pitch angle, and Larmor radius of escaping fast ions simultaneously, providing the clear understanding on fast-ion losses induced by MHD mode as well as non-axisymmetric magnetic field ripples.A Lorentz orbit code (LORBIT code and ASCOT code) has been used to find a position suitable for detection of escaping beam ions. It is found that the sufficient beam-ion flux on the head position of the multi-purpose manipulator (MPM) is expected. Therefore, we decided to install the prototype FILD head using the MPM. The detector is mainly composed of a molybdenum head having a set of two apertures restrict the orbits of fast ions that can enter the probe and eight Faraday films as a charge collector. The size and the position of thoseapertures are decided using the grid calculation program. Faraday film is a thin film of aluminum vapor deposited onto one side of the quartz substrate. The thickness of the films is approximately 0.2 μm. Electric current from each Faraday film will be carried to the low input impedance current amplifier (I-76, NF Corporation) and an isolation amplifier. The signal level of the FILD predicted by the ASCOT code is up to 0.5 μA, which is comparable with that of a FILD in the Compact Helical System (CHS)

    An Accelerating Cosmology Without Dark Energy

    Full text link
    The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996) without requiring the presence of dark energy or a cosmological constant. In a recent study Lima et al. (2008, LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations of the recent transition from a decelerating to an accelerating Universe. Here we test the evolution of such models at high redshift using the constraint on z_eq, the redshift of the epoch of matter radiation equality, provided by the WMAP constraints on the early Integrated Sachs-Wolfe effect. Since the contribution of baryons and radiation was ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM is tested and constrained at widely-separated epochs (z = z_eq and z = 0) in the evolution of the Universe. This comparison reveals a tension between the high redshift CMB constraint on z_eq and that which follows from the low redshift SNIa data, challenging the viability of this class of models.Comment: 12 pages, 8 figure

    The signature of dark energy perturbations in galaxy cluster surveys

    Full text link
    All models of dynamical dark energy possess fluctuations, which affect the number of galaxy clusters in the Universe. We have studied the impact of dark energy clustering on the number of clusters using a generalization of the spherical collapse model and the Press-Schechter formalism. Our statistical analysis is performed in a 7-parameter space using the Fisher matrix method, for several hypothetical Sunyaev-Zel'dovich and weak lensing (shear maps) surveys. In some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when its data is combined with WMAP and SDSS. Future observations could go much further and probe the nature of dark energy by distinguishing between different models on the basis of their perturbations, not only their expansion histories.Comment: 5 pages, 4 figure

    Physical activity among adults residing in 11 countries during the COVID-19 pandemic lockdown

    Get PDF
    During the novel coronavirus (COVID-19) pandemic, physical activity (PA) behaviors were altered worldwide due to public health measures such as "lockdown." This study described PA among adults residing in 11 countries during COVID-19 lockdown and examined factors associated with PA engagement. We conducted a cross-sectional anonymous survey among adults (≥18 years old) in 11 countries (Brazil, Bulgaria, China, India, Ireland, Malaysia, North Macedonia, Singapore, Spain, Turkey, United States). Of 11,775 participants, 63.7% were female and 52.8% were 18-34 years old. More than 40% of participants were insufficiently active (43.9%) and reported a decrease in their PA during lockdown (44.8%). Statistically significant differences were observed in (1) proportions of participants being insufficiently active, (2) level of PA, and (3) decrease in PA across the 11 countries. More stringent governmental policy responses were associated with greater likelihood of being insufficiently active during lockdown (adjusted odds ratio = 1.22, 95% confidence interval = 1.03, 1.45). Higher depression or anxiety scores were associated with greater likelihood of decreased level of PA during lockdown. We found substantial reductions in PA levels during COVID-19 lockdown across countries. Country-specific PA promotion interventions are needed during this and similar global emergencies
    corecore