9 research outputs found

    An Update on the Intracellular and Intercellular Trafficking of Carmoviruses

    Full text link
    [EN] Despite harboring the smallest genomes among plant RNA viruses, carmoviruses have emerged as an ideal model system for studying essential steps of the viral cycle including intracellular and intercellular trafficking. Two small movement proteins, formerly known as double gene block proteins (DGBp1 and DGBp2), have been involved in the movement throughout the plant of some members of carmovirus genera. DGBp1 RNA-binding capability was indispensable for cell-to-cell movement indicating that viral genomes must interact with DGBp1 to be transported. Further investigation on Melon necrotic spot virus (MNSV) DGBp1 subcellular localization and dynamics also supported this idea as this protein showed an actin-dependent movement along microfilaments and accumulated at the cellular periphery. Regarding DGBp2, subcellular localization studies showed that MNSV and Pelargonium flower break virus DGBp2s were inserted into the endoplasmic reticulum (ER) membrane but only MNSV DGBp2 trafficked to plasmodesmata (PD) via the Golgi apparatus through a COPII-dependent pathway. DGBp2 function is still unknown but its localization at PD was a requisite for an efficient cell-to-cell movement. It is also known that MNSV infection can induce a dramatic reorganization of mitochondria resulting in anomalous organelles containing viral RNAs. These putative viral factories were frequently found associated with the ER near the PD leading to the possibility that MNSV movement and replication could be spatially linked. Here, we update the current knowledge of the plant endomembrane system involvement in carmovirus intra-and intercellular movement and the tentative model proposed for MNSV transport within plant cells.This work was funded by grant BIO2014-54862-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT) and the Prometeo Program GV2014/010 from the Generalitat Valenciana.Navarro Bohigues, JA.; PallĂĄs Benet, V. (2017). An Update on the Intracellular and Intercellular Trafficking of Carmoviruses. Frontiers in Plant Science. 8:1-7. https://doi.org/10.3389/fpls.2017.01801S178Adams, M. J., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., 
 Davison, A. J. (2016). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 161(10), 2921-2949. doi:10.1007/s00705-016-2977-6Blake, J. A., Lee, K. W., Morris, T. J., & Elthon, T. E. (2007). Effects of turnip crinkle virus infection on the structure and function of mitochondria and expression of stress proteins in turnips. Physiologia Plantarum, 129(4), 698-706. doi:10.1111/j.1399-3054.2006.00852.xBlanco-PĂ©rez, M., PĂ©rez-CañamĂĄs, M., Ruiz, L., & HernĂĄndez, C. (2016). Efficient Translation of Pelargonium line pattern virus RNAs Relies on a TED-Like 3ÂŽ-Translational Enhancer that Communicates with the Corresponding 5ÂŽ-Region through a Long-Distance RNA-RNA Interaction. PLOS ONE, 11(4), e0152593. doi:10.1371/journal.pone.0152593Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J.-M., & Paris, N. (2002). The Destination for Single-Pass Membrane Proteins Is Influenced Markedly by the Length of the Hydrophobic Domain. The Plant Cell, 14(5), 1077-1092. doi:10.1105/tpc.000620Carrington, J. C., Heaton, L. A., Zuidema, D., Hillman, B. I., & Morris, T. J. (1989). The genome structure of turnip crinkle virus. Virology, 170(1), 219-226. doi:10.1016/0042-6822(89)90369-3Chandra-Shekara, A. C., Navarre, D., Kachroo, A., Kang, H.-G., Klessig, D., & Kachroo, P. (2004). Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. The Plant Journal, 40(5), 647-659. doi:10.1111/j.1365-313x.2004.02241.xCohen, Y., Gisel, A., & Zambryski, P. C. (2000). Cell-to-Cell and Systemic Movement of Recombinant Green Fluorescent Protein-Tagged Turnip Crinkle Viruses. Virology, 273(2), 258-266. doi:10.1006/viro.2000.0441Cohen, Y., Qu, F., Gisel, A., Morris, T. J., & Zambryski, P. C. (2000). Nuclear Localization of Turnip Crinkle Virus Movement Protein p8. Virology, 273(2), 276-285. doi:10.1006/viro.2000.0440Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., & Simon, A. E. (2012). A Ribosome-Binding, 3â€Č Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 86(18), 9828-9842. doi:10.1128/jvi.00677-12GarcĂ­a-Castillo, S., SĂĄnchez-Pina, M. A., & PallĂĄs, V. (2003). Spatio-temporal analysis of the RNAs, coat and movement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plants. Journal of General Virology, 84(3), 745-749. doi:10.1099/vir.0.18715-0GenovĂ©s, A., Navarro, J. A., & PallĂĄs, V. (2006). Functional analysis of the five melon necrotic spot virus genome-encoded proteins. Journal of General Virology, 87(8), 2371-2380. doi:10.1099/vir.0.81793-0GenovĂ©s, A., Navarro, J. A., & PallĂĄs, V. (2009). A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology, 395(1), 133-142. doi:10.1016/j.virol.2009.08.042Genoves, A., Pallas, V., & Navarro, J. A. (2011). Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement. Journal of Virology, 85(15), 7797-7809. doi:10.1128/jvi.02465-10GĂłmez-Aix, C., GarcĂ­a-GarcĂ­a, M., Aranda, M. A., & SĂĄnchez-Pina, M. A. (2015). Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. Molecular Plant-Microbe InteractionsÂź, 28(4), 387-397. doi:10.1094/mpmi-09-14-0274-rGrangeon, R., Jiang, J., & LalibertĂ©, J.-F. (2012). Host endomembrane recruitment for plant RNA virus replication. Current Opinion in Virology, 2(6), 683-690. doi:10.1016/j.coviro.2012.10.003Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., & LalibertĂ©, J.-F. (2013). 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00351Guilley, H., Carrington, J. C., BalĂ zs, E., Jonard, G., Richards, K., & Morris, T. J. (1985). Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Research, 13(18), 6663-6677. doi:10.1093/nar/13.18.6663Hacker, D. L., Petty, I. T. D., Wei, N., & Morris, T. J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology, 186(1), 1-8. doi:10.1016/0042-6822(92)90055-tHerrera-VĂĄsquez, J. A., CĂłrdoba-SellĂ©s, M. C., CebriĂĄn, M. C., Alfaro-FernĂĄndez, A., & JordĂĄ, C. (2009). Seed transmission ofMelon necrotic spot virusand efficacy of seed-disinfection treatments. Plant Pathology, 58(3), 436-442. doi:10.1111/j.1365-3059.2008.01985.xJiang, J., & LalibertĂ©, J.-F. (2016). Membrane Association for Plant Virus Replication and Movement. Current Research Topics in Plant Virology, 67-85. doi:10.1007/978-3-319-32919-2_3Kaido, M., Tsuno, Y., Mise, K., & Okuno, T. (2009). Endoplasmic reticulum targeting of the Red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology, 395(2), 232-242. doi:10.1016/j.virol.2009.09.022Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101Krczal, G. (1995). Transmission of Pelargonium Flower Break Virus (PFBV) in Irrigation Systems and by Thrips. Plant Disease, 79(2), 163. doi:10.1094/pd-79-0163Lerch-Bader, M., Lundin, C., Kim, H., Nilsson, I., & von Heijne, G. (2008). Contribution of positively charged flanking residues to the insertion of transmembrane helices into the endoplasmic reticulum. Proceedings of the National Academy of Sciences, 105(11), 4127-4132. doi:10.1073/pnas.0711580105Lesemann, D.-E., & Adam, G. (1994). ELECTRON MICROSCOPICAL AND SEROLOGICAL STUDIES ON FOUR ISOMETRICAL PELARGONIUM VIRUSES. Acta Horticulturae, (377), 41-54. doi:10.17660/actahortic.1994.377.3Li, W., Qu, F., & Morris, T. J. (1998). Cell-to-Cell Movement of Turnip Crinkle Virus Is Controlled by Two Small Open Reading Frames That Functionin trans. Virology, 244(2), 405-416. doi:10.1006/viro.1998.9125Liu, C., & Nelson, R. S. (2013). The cell biology of Tobacco mosaic virus replication and movement. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00012Marcos, J. F., Vilar, M., PĂ©rez-PayĂĄ, E., & PallĂĄs, V. (1999). In VivoDetection, RNA-Binding Properties and Characterization of the RNA-Binding Domain of the p7 Putative Movement Protein from Carnation Mottle Carmovirus (CarMV). Virology, 255(2), 354-365. doi:10.1006/viro.1998.9596Martínez-Gil, L., Johnson, A. E., & Mingarro, I. (2010). Membrane Insertion and Biogenesis of the Turnip Crinkle Virus p9 Movement Protein. Journal of Virology, 84(11), 5520-5527. doi:10.1128/jvi.00125-10MartĂ­nez-Gil, L., SaurĂ­, A., Vilar, M., PallĂĄs, V., & Mingarro, I. (2007). Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). Virology, 367(2), 348-357. doi:10.1016/j.virol.2007.06.006MartĂ­nez-Turiño, S., & HernĂĄndez, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0MartĂ­nez-Turiño, S., & HernĂĄndez, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001MartĂ­nez-Turiño, S., & HernĂĄndez, C. (2012). Analysis of the subcellular targeting of the smaller replicase protein of Pelargonium flower break virus. Virus Research, 163(2), 580-591. doi:10.1016/j.virusres.2011.12.011Mello, A. F. S., Clark, A. J., & Perry, K. L. (2009). Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle. Journal of General Virology, 91(2), 545-551. doi:10.1099/vir.0.016402-0Miras, M., Sempere, R. N., Kraft, J. J., Miller, W. A., Aranda, M. A., & Truniger, V. (2013). Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking. New Phytologist, 202(1), 233-246. doi:10.1111/nph.12650Mochizuki, T., Hirai, K., Kanda, A., Ohnishi, J., Ohki, T., & Tsuda, S. (2009). Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain. Virology, 390(2), 239-249. doi:10.1016/j.virol.2009.05.012Morozov, S. Y., & Solovyev, A. G. (2003). Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology, 84(6), 1351-1366. doi:10.1099/vir.0.18922-0Mueller, S. J., & Reski, R. (2015). Mitochondrial Dynamics and the ER: The Plant Perspective. Frontiers in Cell and Developmental Biology, 3. doi:10.3389/fcell.2015.00078Navarro, J. A., GenovĂ©s, A., Climent, J., SaurĂ­, A., MartĂ­nez-Gil, L., Mingarro, I., & PallĂĄs, V. (2006). RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology, 356(1-2), 57-67. doi:10.1016/j.virol.2006.07.040Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., 
 Bendahmane, A. (2006). AneIF4Eallele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. The Plant Journal, 48(3), 452-462. doi:10.1111/j.1365-313x.2006.02885.xOhki, T., Akita, F., Mochizuki, T., Kanda, A., Sasaya, T., & Tsuda, S. (2010). The protruding domain of the coat protein of Melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus. Virology, 402(1), 129-134. doi:10.1016/j.virol.2010.03.020Panavas, T., Hawkins, C. M., Panaviene, Z., & Nagy, P. D. (2005). The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology, 338(1), 81-95. doi:10.1016/j.virol.2005.04.025Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe InteractionsÂź, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879Qu, F., Ren, T., & Morris, T. J. (2003). The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step. Journal of Virology, 77(1), 511-522. doi:10.1128/jvi.77.1.511-522.2003Riviere, C. J., & Rochon, D. M. (1990). Nucleotide sequence and genomic organization of melon necrotic spot virus. Journal of General Virology, 71(9), 1887-1896. doi:10.1099/0022-1317-71-9-1887Romero-Brey, I., & Bartenschlager, R. (2014). Membranous Replication Factories Induced by Plus-Strand RNA Viruses. Viruses, 6(7), 2826-2857. doi:10.3390/v6072826Russo, M., & Martelli, G. P. (1982). Ultrastructure of turnip crinkle- and saguaro cactus virus-infected tissues. Virology, 118(1), 109-116. doi:10.1016/0042-6822(82)90324-5SaurĂ­, A., Saksena, S., Salgado, J., Johnson, A. E., & Mingarro, I. (2005). Double-spanning Plant Viral Movement Protein Integration into the Endoplasmic Reticulum Membrane Is Signal Recognition Particle-dependent, Translocon-mediated, and Concerted. Journal of Biological Chemistry, 280(27), 25907-25912. doi:10.1074/jbc.m412476200Serra-Soriano, M., Antonio Navarro, J., & PallĂĄs, V. (2016). Dissecting the multifunctional role of the N-terminal domain of theMelon necrotic spot viruscoat protein in RNA packaging, viral movement and interference with antiviral plant defence. Molecular Plant Pathology, 18(6), 837-849. doi:10.1111/mpp.12448Serra-Soriano, M., PallĂĄs, V., & Navarro, J. A. (2014). A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. The Plant Journal, 77(6), 863-879. doi:10.1111/tpj.12435Shi, Y., Ryabov, E. V., van Wezel, R., Li, C., Jin, M., Wang, W., 
 Hong, Y. (2009). Suppression of local RNA silencing is not sufficient to promote cell-to-cell movement ofTurnip crinkle virusinNicotiana benthamiana. Plant Signaling & Behavior, 4(1), 15-22. doi:10.4161/psb.4.1.7573Teakle, D. S. (1980). FUNGI. Vectors of Plant Pathogens, 417-438. doi:10.1016/b978-0-12-326450-3.50021-8Thomas, C. L., Leh, V., Lederer, C., & Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana. Virology, 306(1), 33-41. doi:10.1016/s0042-6822(02)00018-1Tilsner, J., Linnik, O., Louveaux, M., Roberts, I. M., Chapman, S. N., & Oparka, K. J. (2013). Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. Journal of Cell Biology, 201(7), 981-995. doi:10.1083/jcb.201304003Verchot, J. (2011). Wrapping membranes around plant virus infection. Current Opinion in Virology, 1(5), 388-395. doi:10.1016/j.coviro.2011.09.009Vilar, M., Esteve, V., PallĂĄs, V., Marcos, J. F., & PĂ©rez-PayĂĄ, E. (2001). Structural Properties of Carnation Mottle Virus p7 Movement Protein and Its RNA-binding Domain. Journal of Biological Chemistry, 276(21), 18122-18129. doi:10.1074/jbc.m100706200Vilar, M., SaurĂ­, A., Marcos, J. F., Mingarro, I., & PĂ©rez-PayĂĄ, E. (2005). Transient Structural Ordering of the RNA-Binding Domain of Carnation Mottle Virus p7 Movement Protein Modulates Nucleic Acid Binding. ChemBioChem, 6(8), 1391-1396. doi:10.1002/cbic.200400451Vilar, M., Saurı́, A., MonnĂ©, M., Marcos, J. F., von Heijne, G., PĂ©rez-PayĂĄ, E., & Mingarro, I. (2002). Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 277(26), 23447-23452. doi:10.1074/jbc.m202935200Von Heijne, G. (2007). Formation of Transmembrane Helices In Vivo—Is Hydrophobicity All that Matters? Journal of General Physiology, 129(5), 353-356. doi:10.1085/jgp.200709740Wada, Y., Tanaka, H., Yamashita, E., Kubo, C., Ichiki-Uehara, T., Nakazono-Nagaoka, E., 
 Tsukihara, T. (2007). The structure of melon necrotic spot virus determined at 2.8 Å resolution. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 64(1), 8-13. doi:10.1107/s1744309107066481Wobbe, K. K., Akgoz, M., Dempsey, D. A., & Klessig, D. F. (1998). A Single Amino Acid Change in Turnip Crinkle Virus Movement Protein p8 Affects RNA Binding and Virulence onArabidopsis thaliana. Journal of Virology, 72(7), 6247-6250. doi:10.1128/jvi.72.7.6247-6250.1998Zhang, X., Zhang, X., Singh, J., Li, D., & Qu, F. (2012). Temperature-Dependent Survival of Turnip Crinkle Virus-Infected Arabidopsis Plants Relies on an RNA Silencing-Based Defense That Requires DCL2, AGO2, and HEN1. Journal of Virology, 86(12), 6847-6854. doi:10.1128/jvi.00497-12Zhou, Y., Ryabov, E., Zhang, X., & Hong, Y. (2008). Influence of viral genes on the cell-to-cell spread of RNA silencing. Journal of Experimental Botany, 59(10), 2803-2813. doi:10.1093/jxb/ern14

    Crop updates 2006 - Farming Systems

    Get PDF
    This session covers nineteen papers from different authors: SOIL AND NUTRIENT MANAGEMENT 1. Invetigatingfertilitigating fertilier inve$tment, Wayne Pluske, Nutrient Management Systems 2. KASM, the potassium in Agricultural System Model,Bill Bowden and Craig Scanlan, DAWA Northam and UWA, School of Earth and Geographical Sciences 3. Long term productivity and economic benefits of subsurface acidity management from surface and subsurface liming, Stephen Davies, Chris Gazey and Peter Tozer, Department of Agriculture 4. Furrow and ridges to prevent waterlogging, Dr Derk Bakker, Department of Agriculture 5. Nitrous oxide emissions from a cropped soil in Western Australia, Louise Barton1, David Gatter2, Renee Buck1, Daniel Murphy1, Christoph Hinz1and Bill Porter2 1School of Earth and Geographical Sciences, The University of Western Australia, 2Department of Agriculture GROWER DECISIONS 6. Managing the unmanageable, Bill Bowden Department of Agriculture 7. Review of climate model summaries reported in Department of Agriculture’s Season Outlook, Meredith Fairbanks, Department of Agriculture 8. Mapping the frost risk in Western Australia, Nicolyn Short and Ian Foster, Department of Agriculture 9. .35 kg/ha.day and other myths, James Fisher, Doug Abrecht and Mario D’Antuono, Department of Agriculture 10. Gaining with growers – Lessons from a successful alliance of WA Grower Groups, Tracey M. Gianatti, Grower Group Alliance 11. WA Agribusiness Trial Network Roundup – 2005, Paul Carmody, Local Farmer Group Network, UWA 12. Drivers of no-till adoption, Frank D’Emdenabc, Rick Llewellynabdand Michael Burtonb,aCRC Australian Weed Management; bSchool of Agricultural and Resource Economics, UWA. cDepartment of Agriculture, dCSIRO Sustainable Ecosystems, Adelaide PRODUCTION SYSTEMS, PRECISION AGRICULTURE AND SUSTAINABILITY 13. Maintaining wheat and lupin yields using phase pastures and shielded sprayers to manage increasing herbicide resistance, Caroline Peek, Nadine Eva, Chris Carter and Megan Abrahams, Department of Agriculture 14. Analaysis of a wheat-pasture rotation in the 330mm annual rainfall zone using the STEP model, Andrew Blake and Caroline Peek, Department of Agriculture 15. Response to winter drought by wheat on shallow soil with low seeding rate and wide row spacing, Paul Blackwell1, Sylvain Pottier2and Bill Bowden1 1 Department of Agriculture; 2Esitpa (France) 16. How much yield variation do you need to justify zoning inputs? Michael Robertson and Greg Lyle, CSIRO Floreat, Bill Bowden, Department of Agriculture; Lisa Brennan, CSIRO Brisbane 17. Automatic guidance and wheat row position: On-row versus between-row seeding at various rates of banded P fertilisers, Tony J. Vyn1, Simon Teakle2, Peter Norris3and Paul Blackwell4,1Purdue University, USA; 2Landmark; 3Agronomy for Profit; 4 Department of Agriculture 18. Assessing the sustainability of high production systems (Avon Agricultural Systems Project), Jeff Russell and James Fisher, Department of Agriculture, Roy Murray-Prior and Deb Pritchard, Muresk Institute; Mike Collins, ex WANTFA, 19. The application of precision agriculture techniques to assess the effectiveness of raised beds on saline land in WA, Derk Bakker, Greg Hamilton, Rob Hetherington, Andrew Van Burgel and Cliff Spann, Department of Agricultur

    Crop Updates 2005 - Cereals

    Get PDF
    This session covers thirty six papers from different authors: WHEAT AGRONOMY 1. Optimum sowing time of new wheat varieties in Western Australia, Darshan Sharma, Brenda Shackley, Mohammad Amjad, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture 2. Wheat varieties updated in ‘Flowering Calculator’: A model predicting flowering time, B. Shackley, D. Tennant, D. Sharma and C.M. Zaicou-Kunesch, Department of Agriculture 3. Plant populations for wheat varieties, Christine M. Zaicou-Kunesch, Wal Anderson, Darshan Sharma, Brenda Shackley and Mohammad Amjad, Department of Agriculture 4. New wheat cultivars response to fertiliser nitrogen in four major agricultural regions of Western Australia, Mohammad Amjad, Wal Anderson, Brenda Shackley, Darshan Sharma and Christine Zaicou-Kunesch, Department of Agriculture 5. Agronomic package for EGA Eagle Rock, Steve Penny, Department of Agriculture 6. Field evaluation of eastern and western wheats in large-scale farmer’s trials, Mohammad Amjad, Ben Curtis and Veronika Reck, Department of Agriculture 7. New wheat varieties for a changing environment, Richard Richards, CSIRO Plant Industry; Canberra 8. Farmers can profitably minimise exposure to frost! Garren Knell, Steve Curtin and David Sermon, ConsultAg 9. National Variety Trials, Alan Bedggood, Australian Crops Accreditation System; Horsham 10. Preharvest-sprouting tolerance of wheat in the field, T.B. Biddulph1, T.L. Setter2, J.A. Plummer1 and D.J. Mares3; 1Plant Biology; FNAS, University of Western Australia; 2Department of Agriculture, 3School of Agriculture and Wine, University of Adelaide 11. Waterlogging induces high concentration of Mn and Al in wheat genotypes in acidic soils, H. Khabaz-Saberi, T. Setter, I. Waters and G. McDonald, Department of Agriculture 12. Agronomic responses of new wheat varieties in the Northern Agricultural Region, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture 13. Agronomic responses of new wheat varieties in the Central Agricultural Region of WA, Darshan Sharma, Steve Penny and Wal Anderson, Department of Agriculture 14. EGA Eagle Rock tolerance to metribuzin and its mixtures, Harmohinder Dhammu, David Nicholson and Chris Roberts, Department of Agriculture 15. Herbicide tolerance of new bread wheats, Harmohinder Dhammu1 and David Nicholson2, Department of Agriculture NUTRITION 16. The impact of fertiliser placement, timing and rates on nitrogen-use efficiency, Stephen Loss, CSBP Ltd 17. Cereals deficient in potassium are most susceptible to some leaf diseases, Ross Brennan and Kith Jayasena, Department of Agriculture 18. Responses of cereal yields to potassium fertiliser type, placement and timing, Eddy Pol, CSBP Limited 19. Sulphate of Potash, the potash of choice at seeding, Simon Teakle, United Farmers Co-operative 20. Essential disease management for successful barley production, K. Jayasena, R. Loughman, C. Beard, B. Paynter, K. Tanaka, G. Poulish and A. Smith, Department of Agriculture 21. Genotypic differences in potassium efficiency of wheat, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia 22. Genotypic differences in potassium efficiency of barley, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia 23. Investigating timing of nitrogen application in wheat, Darshan Sharma and Lionel Martin, Department of Agriculture, and Muresk Institute of Agriculture, Curtin University of Technology 24. Nutrient timing requirements for increased crop yields in the high rainfall cropping zone, Narelle Hill, Ron McTaggart, Dr Wal Anderson and Ray Tugwell, Department of Agriculture DISEASES 25. Integrate strategies to manage stripe rust risk, Geoff Thomas, Robert Loughman, Ciara Beard, Kith Jayasena and Manisha Shankar, Department of Agriculture 26. Effect of primary inoculum level of stripe rust on variety response in wheat, Manisha Shankar, John Majewski and Robert Loughman, Department of Agriculture 27. Disease resistance update for wheat varieties in WA, M. Shankar, J.M. Majewski, D. Foster, H. Golzar, J. Piotrowski and R. Loughman, Department of Agriculture 28. Big droplets for wheat fungicides, Rob Grima, Agronomist, Elders 29. On farm research to investigate fungicide applications to minimise leaf disease impacts in wheat, Jeff Russell and Angie Roe, Department of Agriculture, and Farm Focus Consultants PESTS 30. Rotations for nematode management, Vivien A. Vanstone, Sean J. Kelly, Helen F. Hunter and Mena C. Gilchrist, Department of Agriculture 31. Investigation into the adaqyacy of sealed farm silos in Western Australia to control phosphine-resistant Rhyzopertha dominica, C.R. Newman, Department of Agriculture 32.Insect contamination of cereal grain at harvest, Svetlana Micic and Phil Michael, Department of Agriculture 33. Phosure – Extending the life of phosphine, Gabrielle Coupland and Ern Kostas, Co-operative Bulk Handling SOIL 34. Optimum combinations of ripping depth and tine spacing for increasing wheat yield, Mohammed Hamza and Wal Anderson, Department of Agriculture 35. Hardpan penetration ability of wheat roots, Tina Botwright Acuña and Len Wade, School of Plant Biology, University of Western Australia MARKETS 36. Latin America: An emerging agricultural powerhouse, Ingrid Richardson, Food and Agribusiness Research, Rabobank; Sydne

    Crop updates 2006 - Farming Systems

    No full text
    This session covers nineteen papers from different authors: SOIL AND NUTRIENT MANAGEMENT 1. Invetigatingfertilitigating fertilier inve$tment, Wayne Pluske, Nutrient Management Systems 2. KASM, the potassium in Agricultural System Model,Bill Bowden and Craig Scanlan, DAWA Northam and UWA, School of Earth and Geographical Sciences 3. Long term productivity and economic benefits of subsurface acidity management from surface and subsurface liming, Stephen Davies, Chris Gazey and Peter Tozer, Department of Agriculture 4. Furrow and ridges to prevent waterlogging, Dr Derk Bakker, Department of Agriculture 5. Nitrous oxide emissions from a cropped soil in Western Australia, Louise Barton1, David Gatter2, Renee Buck1, Daniel Murphy1, Christoph Hinz1and Bill Porter2 1School of Earth and Geographical Sciences, The University of Western Australia, 2Department of Agriculture GROWER DECISIONS 6. Managing the unmanageable, Bill Bowden Department of Agriculture 7. Review of climate model summaries reported in Department of Agriculture’s Season Outlook, Meredith Fairbanks, Department of Agriculture 8. Mapping the frost risk in Western Australia, Nicolyn Short and Ian Foster, Department of Agriculture 9. .35 kg/ha.day and other myths, James Fisher, Doug Abrecht and Mario D’Antuono, Department of Agriculture 10. Gaining with growers – Lessons from a successful alliance of WA Grower Groups, Tracey M. Gianatti, Grower Group Alliance 11. WA Agribusiness Trial Network Roundup – 2005, Paul Carmody, Local Farmer Group Network, UWA 12. Drivers of no-till adoption, Frank D’Emdenabc, Rick Llewellynabdand Michael Burtonb,aCRC Australian Weed Management; bSchool of Agricultural and Resource Economics, UWA. cDepartment of Agriculture, dCSIRO Sustainable Ecosystems, Adelaide PRODUCTION SYSTEMS, PRECISION AGRICULTURE AND SUSTAINABILITY 13. Maintaining wheat and lupin yields using phase pastures and shielded sprayers to manage increasing herbicide resistance, Caroline Peek, Nadine Eva, Chris Carter and Megan Abrahams, Department of Agriculture 14. Analaysis of a wheat-pasture rotation in the 330mm annual rainfall zone using the STEP model, Andrew Blake and Caroline Peek, Department of Agriculture 15. Response to winter drought by wheat on shallow soil with low seeding rate and wide row spacing, Paul Blackwell1, Sylvain Pottier2and Bill Bowden1 1 Department of Agriculture; 2Esitpa (France) 16. How much yield variation do you need to justify zoning inputs? Michael Robertson and Greg Lyle, CSIRO Floreat, Bill Bowden, Department of Agriculture; Lisa Brennan, CSIRO Brisbane 17. Automatic guidance and wheat row position: On-row versus between-row seeding at various rates of banded P fertilisers, Tony J. Vyn1, Simon Teakle2, Peter Norris3and Paul Blackwell4,1Purdue University, USA; 2Landmark; 3Agronomy for Profit; 4 Department of Agriculture 18. Assessing the sustainability of high production systems (Avon Agricultural Systems Project), Jeff Russell and James Fisher, Department of Agriculture, Roy Murray-Prior and Deb Pritchard, Muresk Institute; Mike Collins, ex WANTFA, 19. The application of precision agriculture techniques to assess the effectiveness of raised beds on saline land in WA, Derk Bakker, Greg Hamilton, Rob Hetherington, Andrew Van Burgel and Cliff Spann, Department of Agricultur

    Crop Updates 2005 - Cereals

    No full text
    This session covers thirty six papers from different authors: WHEAT AGRONOMY 1. Optimum sowing time of new wheat varieties in Western Australia, Darshan Sharma, Brenda Shackley, Mohammad Amjad, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture 2. Wheat varieties updated in ‘Flowering Calculator’: A model predicting flowering time, B. Shackley, D. Tennant, D. Sharma and C.M. Zaicou-Kunesch, Department of Agriculture 3. Plant populations for wheat varieties, Christine M. Zaicou-Kunesch, Wal Anderson, Darshan Sharma, Brenda Shackley and Mohammad Amjad, Department of Agriculture 4. New wheat cultivars response to fertiliser nitrogen in four major agricultural regions of Western Australia, Mohammad Amjad, Wal Anderson, Brenda Shackley, Darshan Sharma and Christine Zaicou-Kunesch, Department of Agriculture 5. Agronomic package for EGA Eagle Rock, Steve Penny, Department of Agriculture 6. Field evaluation of eastern and western wheats in large-scale farmer’s trials, Mohammad Amjad, Ben Curtis and Veronika Reck, Department of Agriculture 7. New wheat varieties for a changing environment, Richard Richards, CSIRO Plant Industry; Canberra 8. Farmers can profitably minimise exposure to frost! Garren Knell, Steve Curtin and David Sermon, ConsultAg 9. National Variety Trials, Alan Bedggood, Australian Crops Accreditation System; Horsham 10. Preharvest-sprouting tolerance of wheat in the field, T.B. Biddulph1, T.L. Setter2, J.A. Plummer1 and D.J. Mares3; 1Plant Biology; FNAS, University of Western Australia; 2Department of Agriculture, 3School of Agriculture and Wine, University of Adelaide 11. Waterlogging induces high concentration of Mn and Al in wheat genotypes in acidic soils, H. Khabaz-Saberi, T. Setter, I. Waters and G. McDonald, Department of Agriculture 12. Agronomic responses of new wheat varieties in the Northern Agricultural Region, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture 13. Agronomic responses of new wheat varieties in the Central Agricultural Region of WA, Darshan Sharma, Steve Penny and Wal Anderson, Department of Agriculture 14. EGA Eagle Rock tolerance to metribuzin and its mixtures, Harmohinder Dhammu, David Nicholson and Chris Roberts, Department of Agriculture 15. Herbicide tolerance of new bread wheats, Harmohinder Dhammu1 and David Nicholson2, Department of Agriculture NUTRITION 16. The impact of fertiliser placement, timing and rates on nitrogen-use efficiency, Stephen Loss, CSBP Ltd 17. Cereals deficient in potassium are most susceptible to some leaf diseases, Ross Brennan and Kith Jayasena, Department of Agriculture 18. Responses of cereal yields to potassium fertiliser type, placement and timing, Eddy Pol, CSBP Limited 19. Sulphate of Potash, the potash of choice at seeding, Simon Teakle, United Farmers Co-operative 20. Essential disease management for successful barley production, K. Jayasena, R. Loughman, C. Beard, B. Paynter, K. Tanaka, G. Poulish and A. Smith, Department of Agriculture 21. Genotypic differences in potassium efficiency of wheat, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia 22. Genotypic differences in potassium efficiency of barley, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia 23. Investigating timing of nitrogen application in wheat, Darshan Sharma and Lionel Martin, Department of Agriculture, and Muresk Institute of Agriculture, Curtin University of Technology 24. Nutrient timing requirements for increased crop yields in the high rainfall cropping zone, Narelle Hill, Ron McTaggart, Dr Wal Anderson and Ray Tugwell, Department of Agriculture DISEASES 25. Integrate strategies to manage stripe rust risk, Geoff Thomas, Robert Loughman, Ciara Beard, Kith Jayasena and Manisha Shankar, Department of Agriculture 26. Effect of primary inoculum level of stripe rust on variety response in wheat, Manisha Shankar, John Majewski and Robert Loughman, Department of Agriculture 27. Disease resistance update for wheat varieties in WA, M. Shankar, J.M. Majewski, D. Foster, H. Golzar, J. Piotrowski and R. Loughman, Department of Agriculture 28. Big droplets for wheat fungicides, Rob Grima, Agronomist, Elders 29. On farm research to investigate fungicide applications to minimise leaf disease impacts in wheat, Jeff Russell and Angie Roe, Department of Agriculture, and Farm Focus Consultants PESTS 30. Rotations for nematode management, Vivien A. Vanstone, Sean J. Kelly, Helen F. Hunter and Mena C. Gilchrist, Department of Agriculture 31. Investigation into the adaqyacy of sealed farm silos in Western Australia to control phosphine-resistant Rhyzopertha dominica, C.R. Newman, Department of Agriculture 32.Insect contamination of cereal grain at harvest, Svetlana Micic and Phil Michael, Department of Agriculture 33. Phosure – Extending the life of phosphine, Gabrielle Coupland and Ern Kostas, Co-operative Bulk Handling SOIL 34. Optimum combinations of ripping depth and tine spacing for increasing wheat yield, Mohammed Hamza and Wal Anderson, Department of Agriculture 35. Hardpan penetration ability of wheat roots, Tina Botwright Acuña and Len Wade, School of Plant Biology, University of Western Australia MARKETS 36. Latin America: An emerging agricultural powerhouse, Ingrid Richardson, Food and Agribusiness Research, Rabobank; Sydne

    Niedere Pflanzen

    No full text
    corecore