41 research outputs found

    Interpreting granulite facies events through rare earth element partitioning arrays

    Get PDF
    The use of rare earth element (REE) partition coefficients is an increasingly common tool in metamorphic studies, linking the growth or modification of accessory mineral geochronometers to the bulk silicate mineral assemblage. The most commonly used mineral pair for the study of high-grade metamorphic rocks is zircon and garnet. The link from U–Pb ages provided by zircon to the P–T information recorded by garnet can be interpreted in relation to experimental data. The simplistic approach of taking the average REE abundances for zircon and garnet and comparing them directly to experimentally derived partition coefficients is imperfect, in that it cannot represent the complexity of a natural rock system. This study describes a method that uses all the zircon analyses from a sample, and compares them to different garnet compositions in the same rock. Using the most important REE values, it is possible to define zircon–garnet equilibrium using an array rather than an average. The array plot describes partitioning between zircon and garnet using DYb and DYb/DGd as the defining features of the relationship. This approach provides far more sensitivity to mineral reactions and diffusional processes, enabling a more detailed interpretation of metamorphic history of the sample

    The Neoarchaean Uyea Gneiss Complex, Shetland: an onshore fragment of the Rae Craton on the European Plate

    Get PDF
    A tract of amphibolite facies granitic gneisses and metagabbros in northern Shetland, U.K., is here named the Uyea Gneiss Complex. Zircon U–Pb dating indicates emplacement of the igneous protoliths of the complex c. 2746–2726 Ma, at a later time than most of the Archaean protoliths of the Lewisian Gneiss Complex of mainland Scotland. Calc-alkaline geochemistry of the Uyea Gneiss Complex indicates arc-affinity and a strong genetic kinship among the mafic and felsic components. Zircon Hf compositions suggest an enriched mantle source and limited interaction with older crust during emplacement. Ductile fabrics developed soon after emplacement, with zircon rims at c. 2710 Ma, but there was little further deformation until Caledonian reworking east of the Uyea Shear Zone. There is no evidence for the Palaeoproterozoic reworking that dominates large tracts of the Lewisian Gneiss Complex and of the Nagssugtoqidian Orogen of East Greenland. The more northerly location of the Uyea Gneiss Complex and extensive offshore basement of similar age implies that, prior to the opening of the North Atlantic Ocean, these rocks were contiguous with the Archaean Rae Craton

    Hemispheric asymmetry in ocean change and the productivity of ecosystem sentinels

    Get PDF
    Climate change and other human activities are causing profound effects on marine ecosystem productivity. We show that the breeding success of seabirds is tracking hemispheric differences in ocean warming and human impacts, with the strongest effects on fish-eating, surface-foraging species in the north. Hemispheric asymmetry suggests the need for ocean management at hemispheric scales. For the north, tactical, climate-based recovery plans for forage fish resources are needed to recover seabird breeding productivity. In the south, lower-magnitude change in seabird productivity presents opportunities for strategic management approaches such as large marine protected areas to sustain food webs and maintain predator productivity. Global monitoring of seabird productivity enables the detection of ecosystem change in remote regions and contributes to our understanding of marine climate impacts on ecosystems

    Hemispheric asymmetry in ocean change and the productivity of ecosystem sentinels

    Get PDF
    Climate change and other human activities are causing profound effects on marine ecosystem productivity. We show that the breeding success of seabirds is tracking hemispheric differences in ocean warming and human impacts, with the strongest effects on fish-eating, surface-foraging species in the north. Hemispheric asymmetry suggests the need for ocean management at hemispheric scales. For the north, tactical, climate-based recovery plans for forage fish resources are needed to recover seabird breeding productivity. In the south, lower-magnitude change in seabird productivity presents opportunities for strategic management approaches such as large marine protected areas to sustain food webs and maintain predator productivity. Global monitoring of seabird productivity enables the detection of ecosystem change in remote regions and contributes to our understanding of marine climate impacts on ecosystems

    Isotopic systematics of zircon indicate an African affinity for the rocks of southernmost India

    No full text
    Southern India lies in an area of Gondwana where multiple blocks are juxtaposed along Moho-penetrating structures, the significance of which are not well understood. Adequate geochronological data that can be used to differentiate the various blocks are also lacking. We present a newly acquired SIMS U-Pb, Lu-Hf, O isotopic and trace element geochemical dataset from zircon and garnet from the protoliths of the Nagercoil Block at the very tip of southern India. The data indicate that the magmatic protoliths of the rocks in this block formed at c. 2040 Ma with Lu-Hf, O-isotope and trace element data consistent with formation in a magmatic arc environment. The zircon data from Nagercoil Block are isotopically and temporally distinct from those in all the other blocks in southern India, but remarkably correspond to rocks in East Africa that are exposed on the southern margin of the Tanzania-Bangweulu Block. The new data suggest that the tip of southern India has an African affinity and a major suture zone must lie along its northern margin. All of these blocks were finally brought together during the Ediacaran-Cambrian amalgamation of Gondwana where they underwent high to ultrahigh temperature metamorphism.Chris Clark, Alan S. Collins, Richard J. M. Taylor and Martin Han

    Structure of Alba: an archaeal chromatin protein modulated by acetylation

    No full text
    Eukaryotic DNA is packaged into nucleosomes that regulate the accessibility of the genome to replication, transcription and repair factors. Chromatin accessibility is controlled by histone modifications including acetylation and methylation. Archaea possess eukary otic-like machineries for DNA replication, transcription and information processing. The conserved archaeal DNA binding protein Alba (formerly Sso10b) interacts with the silencing protein Sir2, which regulates Alba’s DNA binding affinity by deacetylation of a lysine residue. We present the crystal structure of Alba from Sulfolobus solfataricus at 2.6 Å resolution (PDB code 1h0x). The fold is reminiscent of the N-terminal DNA binding domain of DNase I and the C-terminal domain of initiation factor IF3. The Alba dimer has two extended β-hairpins flanking a central body containing the acetylated lysine, Lys16, suggesting three main points of contact with the DNA. Fluorescence, calorimetry and electrophoresis data suggest a final binding stoichiometry of ∼5 bp DNA per Alba dimer. We present a model for the Alba–DNA interaction consistent with the available structural, biophysical and electron microscopy data

    Probing the history of ultra-high temperature metamorphism through rare earth element diffusion in zircon

    Get PDF
    OnlinePubl.The extent to which solid-state volume diffusion modifies rare earth element (REE) abundances in accessory minerals during high-temperature metamorphism governs our ability to link recorded trace-element compositions to particular thermal events. We model diffusion of REE in zircon under different temperature–time conditions and show that, for both short-lived (e.g. 1100°C for 1–5 Ma) and more prolonged (e.g. 1050°C for 10–30 Ma or 1000°C for 200 Ma) episodes of ultra-high-temperature (UHT) metamorphism, REE diffusion in igneous zircon is sufficiently rapid for REE in a ~50-μm grain to equilibrate with the new metamorphic mineral assemblage of the host rock. By contrast, unless diffusion is accelerated by recrystallization, the presence of fluids or other processes at temperatures below 900°C zircon will largely retain its original pre-metamorphic REE abundance pattern, even when the thermal event is long lived (≥100 Ma). Where volume diffusion is dominant, for instance, in the absence of a fluid phase, the sensitivity of REE mobility to temperature can help constrain the temperature–time path of high-grade metamorphic rocks. Modelling of well-characterized natural samples from the regional-scale aureole surrounding the Rogaland Igneous Complex (RIC) in SW Norway shows that variations in REE concentration patterns in zircon indicate a T–t evolution that is consistent with independent P–T–t estimates for regional metamorphism based on phase equilibrium modelling (850–950°C at 7–8 kbar for ~100 Ma). Greater modification of REE abundance patterns in zircons within 2 km of the RIC contact, however, indicates that UHT conditions persisted for ~150 Ma close to the intrusion, with a temperature of ~1100°C for 1–5 Ma at the RIC contact. Thermal modelling suggests that the inferred T–t histories of samples from different distances from the RIC contact are best explained if the complex was emplaced incrementally over 1–5 Ma.Eleanore Blereau, Chris Clark, Peter D. Kinny, Eleanor Sansom, Richard J. M. Taylor, Martin Han
    corecore