964 research outputs found

    A High Performance H2-Cl2 Fuel Cell for Space Power Applications

    Get PDF
    NASA has numerous airborne/spaceborne applications for which high power and energy density power sources are needed. The proton exchange membrane fuel cell (PEMFC) is an attractive candidate for such a power source. PEMFC's offer many advantages for airborne/spaceborne applications. They have high power and energy densities, convert fuel to electrical power with high efficiency at both part and full load, and can rapidly startup and shutdown. In addition, PEMFC's are lightweight and operate silently. A significant impediment to the attainment of very high power and energy densities by PEMFC's is their current exclusive reliance on oxygen as the oxidant. Conventional PEMFC's oxidize hydrogen at the anode and reduce oxygen at the cathode. The electrode kinetics of oxygen reduction are known to be highly irreversible, incurring large overpotential losses. In addition, the modest open circuit potential of 1.2V for the H2-O2 fuel cell is unattainable due to mixed potential effects at the oxygen electrode. Because of the high overpotential losses, cells using H2 and O2 are capable of achieving high current densities only at very low cell voltages, greatly curtailing their power output. Based on experimental work on chlorine reduction in a gas diffusion electrode, we believe significant increases in both the energy and power densities of PEMFC systems can be achieved by employing chlorine as an alternative oxidant

    Current Distribution for the Metallization of Resistive Wafer Substrates under Controlled Geometric Variations

    Get PDF
    Current distribution simulation results are presented for the metallizaton of 200-mm resistive wafer substrates. A novel horizontal plating cell design that features an insulating hole and a wafer holder that is capable of varying the wafer position vertically during the metallization process is considered to improve the current distribution across the wafer substrate surface. Numerical analysis is used to investigate the influence of the insulating hole size, wafer position, and wafer movement during the deposition process on the current distribution and is compared to experimental data for copper deposition when possible. Submicrometer scale multilevel metallization is one of the key technologies for the next generation of ultralarge-scale integration

    Cardiac Dysfunction and Shock in Pediatric Patients With COVID-19.

    Get PDF
    Coronavirus disease-2019 (COVID-19) has been reported to cause significant morbidity in adults, with reportedly a lesser impact on children. Cardiac dysfunction has only been described in adults thus far. We describe 3 cases of previously healthy children presenting with shock and COVID-19-related cardiac inflammation. (Level of Difficulty: Intermediate.)

    Anthropocene environmental change in an internationally important oligotrophic catchment on the Atlantic seaboard of western Europe

    Get PDF
    Oligotrophic catchments with short spatey streams, upland lakes and peaty soils characterise northwest European Atlantic coastal regions. These catchments are important biodiversity refuges, particularly for sensitive diadromous fish populations but are subject to changes in land use and land management practices associated with afforestation, agriculture and rural development. Quantification of the degree of catchment degradation resulting from such anthropogenic impacts is often limited by a lack of long-term baseline data in what are generally relatively isolated, poorly studied catchments. This research uses a combination of palaeolimnological (radiometrically-dated variations in sedimentary geochemical elements, pollen, diatoms and remains of cladocera), census, and instrumental data, along with hindcast estimates to quantify environmental changes and their aquatic impacts since the late 19th century. The most likely drivers of any change are also identified. Results confirm an aquatic biotic response (phyto- and zooplankton) to soil erosion and nutrient enrichment associated with the onset of commercial conifer afforestation, effects that were subsequently enhanced as a result of increased overgrazing in the catchment and, possibly, climate warming. The implications for the health of aquatic resources in the catchment are discussedEnvironmental Protection Agency in Ireland (ILLUMINATE 2005-W-MS-40, P.McGinnity was supported by the Beaufort Marine Research Award in Fish Population Genetics funded by the Irish Government under the Sea Change Programme

    The response of North Atlantic diadromous fish to multiple stressors including land use change: a multidecadal study

    Get PDF
    This is a author-produced PDF of a 'Just in' article published in Canadian Journal of Fisheries and Aquatic Sciences following peer review. The definitive publisher-authenticated version 'The response of North Atlantic diadromous fish to multiple stressors including land use change: a multidecadal study Elvira de Eyto, Catherine Dalton, Mary M Dillane, Eleanor Jennings, Philip McGinnity, Barry O'Dwyer, Russell Poole, Ger G Rogan, David Taylor Canadian Journal of Fisheries and Aquatic Sciences, Published on the web 19 May 2016, 10.1139/cjfas-2015-0450' is available from DOI 10.1139/cjfas-2015-0450'Reduction of freshwater habitat quality due to land use change can have significant impacts on diadromous fish. Partitioning this impact from other potential drivers, such as changing marine conditions and climate, is hampered by a lack of long term datasets. Here, four decades of data were used to assess the impact of land use change on Salmo salar L. and anadromous Salmo trutta L. in the Burrishoole catchment, Ireland, one of the few index sites for diadromous fish in the North Atlantic. Land use change was found to have no significant impact on the freshwater survival of either salmon or trout. However, climate impacted significantly on the survival of salmon and trout in freshwater, with poor survival in years with wetter warmer winters, coinciding with positive North Atlantic Oscillation values. Additionally, cold springs were associated with higher survival in trout. The addition of hatchery salmon into the salmon spawning cohort coincided with low freshwater survival. Our results highlight the necessity for a broad ecosystem approach in any conservation effort of these species

    The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

    Full text link
    Observations indicate that nearly all galaxies contain supermassive black holes (SMBHs) at their centers. When galaxies merge, their component black holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves (GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the recently-released North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits. As we did not find strong evidence for GWs in our data, we placed 95\% upper limits on the strength of GWs from such sources as a function of GW frequency and sky location. We placed a sky-averaged upper limit on the GW strain of h0<7.3(3)×1015h_0 < 7.3(3) \times 10^{-15} at fgw=8f_\mathrm{gw}= 8 nHz. We also developed a technique to determine the significance of a particular signal in each pulsar using ``dropout' parameters as a way of identifying spurious signals in measurements from individual pulsars. We used our upper limits on the GW strain to place lower limits on the distances to individual SMBHBs. At the most-sensitive sky location, we ruled out SMBHBs emitting GWs with fgw=8f_\mathrm{gw}= 8 nHz within 120 Mpc for M=109M\mathcal{M} = 10^9 \, M_\odot, and within 5.5 Gpc for M=1010M\mathcal{M} = 10^{10} \, M_\odot. We also determined that there are no SMBHBs with M>1.6×109M\mathcal{M} > 1.6 \times 10^9 \, M_\odot emitting GWs in the Virgo Cluster. Finally, we estimated the number of potentially detectable sources given our current strain upper limits based on galaxies in Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris cosmological simulation project. Only 34 out of 75,000 realizations of the local Universe contained a detectable source, from which we concluded it was unsurprising that we did not detect any individual sources given our current sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send any comments/questions to S. J. Vigeland ([email protected]

    Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate

    Get PDF
    Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material
    corecore