7,925 research outputs found

    Enhancing Social Connectedness in Anxiety and Depression Through Amplification of Positivity: Preliminary Treatment Outcomes and Process of Change.

    Get PDF
    BackgroundAnxiety and depressive disorders are often characterized by perceived social disconnection, yet evidence-based treatments produce only modest improvements in this domain. The well-established link between positive affect (PA) and social connectedness suggests that directly targeting PA in treatment may be valuable.MethodA secondary analysis of a waitlist-controlled trial (N=29) was conducted to evaluate treatment response and process of change in social connectedness within a 10-session positive activity intervention protocol-Amplification of Positivity (AMP)-designed to increase PA in individuals seeking treatment for anxiety or depression (ClinicalTrials.gov Identifier: NCT02330627). Perceived social connectedness and PA/negative affect (NA) were assessed throughout treatment. Time-lagged multilevel mediation models examined the process of change in affect and connectedness throughout treatment.ResultsThe AMP group displayed significantly larger improvements in social connectedness from pre- to post-treatment compared to waitlist; improvements were maintained through 6-month follow-up. Within the AMP group, increases in PA and decreases in NA both uniquely predicted subsequent increases in connectedness throughout treatment. However, experiencing heightened NA throughout treatment attenuated the effect of changes in PA on connectedness. Improvements in connectedness predicted subsequent increases in PA, but not changes in NA.ConclusionsThese preliminary findings suggest that positive activity interventions may be valuable for enhancing social connectedness in individuals with clinically impairing anxiety or depression, possibly through both increasing positive emotions and decreasing negative emotions

    Paper Session II-A - Space Station Payload Adaptation System

    Get PDF
    The internal, pressurized payloads used on early flight of the Space Station will consist of many payloads and on-going investigations carried over from the Shuttle. Therefore, the Space Station will require a small payload carrier that can adapt Shuttle payloads to the Space Station and also offer these transitional payloads the full advantages of Space Station capabilities such as longer microgravity periods, increased crew availability, and increased resources such as power, data and heat rejection capability. An end-to-end systems analysis of payload integration activities dictates the need for improved containers to fully exploit Space Station resources, improved operation efficiency and increase design flexibility. In response to this need, improved payload containers as well as a structure to adapt these and existing payload containers to the Space Station rack system have been designed

    Theoretical studies of the potential surface for the F - H2 greater than HF + H reaction

    Get PDF
    The F + H2 yields HF + H potential energy hypersurface was studied in the saddle point and entrance channel regions. Using a large (5s 5p 3d 2f 1g/4s 3p 2d) atomic natural orbital basis set, a classical barrier height of 1.86 kcal/mole was obtained at the CASSCF/multireference CI level (MRCI) after correcting for basis set superposition error and including a Davidson correction (+Q) for higher excitations. Based upon an analysis of the computed results, the true classical barrier is estimated to be about 1.4 kcal/mole. The location of the bottleneck on the lowest vibrationally adiabatic potential curve was also computed and the translational energy threshold determined from a one-dimensional tunneling calculation. Using the difference between the calculated and experimental threshold to adjust the classical barrier height on the computed surface yields a classical barrier in the range of 1.0 to 1.5 kcal/mole. Combining the results of the direct estimates of the classical barrier height with the empirical values obtained from the approximation calculations of the dynamical threshold, it is predicted that the true classical barrier height is 1.4 + or - 0.4 kcal/mole. Arguments are presented in favor of including the relatively large +Q correction obtained when nine electrons are correlated at the CASSCF/MRCI level

    Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    Get PDF
    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch

    Benefit-Cost Analysis of FEMA Hazard Mitigation Grants

    Get PDF
    Mitigation ameliorates the impact of natural hazards on communities by reducing loss of life and injury, property and environmental damage, and social and economic disruption. The potential to reduce these losses brings many benefits, but every mitigation activity has a cost that must be considered in our world of limited resources. In principle benefit-cost analysis (BCA) can be used to assess a mitigation activity’s expected net benefits (discounted future benefits less discounted costs), but in practice this often proves difficult. This paper reports on a study that refined BCA methodologies and applied them to a national statistical sample of FEMA mitigation activities over a ten-year period for earthquake, flood, and wind hazards. The results indicate that the overall benefit-cost ratio for FEMA mitigation grants is about 4 to 1, though the ratio varies according to hazard and mitigation type.

    Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    Get PDF
    The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch

    Optimization of Ectopic Gene Expression in Skeletal Muscle Through DNA Transfer by Electroporation.

    Get PDF
    Background Electroporation (EP) is a widely used non-viral gene transfer method. We have attempted to develop an exact protocol to maximize DNA expression while minimizing tissue damage following EP of skeletal muscle in vivo. Specifically, we investigated the effects of varying injection techniques, electrode surface geometry, and plasmid mediums. Results We found that as the amount of damage increased in skeletal muscle in response to EP, the level of β-galactosidase (β-gal) expression drastically decreased and that there was no evidence of β-gal expression in damaged fibers. Two specific types of electrodes yielded the greatest amount of expression. We also discovered that DNA uptake in skeletal muscle following intra-arterial injection of DNA was significantly enhanced by EP. Finally, we found that DMSO and LipoFECTAMINE™, common enhancers of DNA electroporation in vitro, had no positive effect on DNA electroporationin vivo. Conclusions When injecting DNA intramuscularly, a flat plate electrode without any plasmid enhancers is the best method to achieve high levels of gene expression

    Ways of spectating: unravelling spectator participation in Kinect play

    Get PDF
    We explore spectating on video game play as an interactional and participatory activity. Drawing on a corpus of video recordings capturing 'naturally occurring' Kinect gaming within home settings, we detail how the analytic 'work' of spectating is interactionally accomplished as a matter of collaborative action with players and engagement in the game. We examine: spectators supporting players with continuous 'scaffolding'; spectators critiquing player technique during and between moments of play; spectators recognising and complimenting competent player conduct; and spectators reflecting on prior play to build instructions for the player. From this we draw out a number of points that shift the conversation in HCI about 'the spectator' towards understanding and designing for spectating as an interactional activity; that is, sequentially ordered and temporally coordinated. We also discuss bodily conduct and the particular ways of 'seeing' involved in spectating, and conclude with remarks on conceptual and design implications for HCI

    Computational Fluid Dynamic Simulations for Determination of Ventricular Workload in Aortic Arch Obstructions

    Get PDF
    Objective The cardiac workload associated with various types of aortic obstruction was determined using computational fluid dynamic simulations. Methods Computed tomography image data were collected from 4 patients with 4 distinct types of aortic arch obstructions and 4 controls. The categorization of arch hypoplasia corresponded to the “A, B, C” nomenclature of arch interruption; a type “D” was added to represent diffuse arch hypoplasia. Measurements of the vessel diameter were compared against the normal measurements to determine the degree of narrowing. Three-dimensional models were created for each patient, and additional models were created for type A and B hypoplasia to represent 25%, 50%, and 75% diameter narrowing. The boundary conditions for the computational simulations were chosen to achieve realistic flow and pressures in the control cases. The simulations were then repeated after changing the boundary conditions to represent a range of cardiac and vascular adaptations. The resulting cardiac workload was compared with the control cases. Results Of the 4 patients investigated, 1 had aortic coarctation and 3 had aortic hypoplasia. The cardiac workload of the patients with 25% narrowing type A and B hypoplasia was not appreciably different from that of the control. When comparing the different arch obstructions, 75% type A, 50% type B, and 50% type D hypoplasia required a greater workload increase than 75% coarctation. Conclusions The present study has determined the hemodynamic significance of aortic arch obstruction using computational simulations to calculate the cardiac workload. These results suggest that all types of hypoplasia pose more of a workload challenge than coarctation with an equivalent degree of narrowing
    • …
    corecore