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Abstract 
Objective 
The cardiac workload associated with various types of aortic obstruction was determined using computational 
fluid dynamic simulations. 

Methods 
Computed tomography image data were collected from 4 patients with 4 distinct types of aortic 
arch obstructions and 4 controls. The categorization of arch hypoplasia corresponded to the “A, B, C” 
nomenclature of arch interruption; a type “D” was added to represent diffuse arch hypoplasia. Measurements of 
the vessel diameter were compared against the normal measurements to determine the degree of narrowing. 
Three-dimensional models were created for each patient, and additional models were created for type A and B 
hypoplasia to represent 25%, 50%, and 75% diameter narrowing. The boundary conditions for the 
computational simulations were chosen to achieve realistic flow and pressures in the control cases. The 
simulations were then repeated after changing the boundary conditions to represent a range of cardiac and 
vascular adaptations. The resulting cardiac workload was compared with the control cases. 

Results 
Of the 4 patients investigated, 1 had aortic coarctation and 3 had aortic hypoplasia. The cardiac workload of the 
patients with 25% narrowing type A and B hypoplasia was not appreciably different from that of the control. 
When comparing the different arch obstructions, 75% type A, 50% type B, and 50% type D hypoplasia required a 
greater workload increase than 75% coarctation. 

Conclusions 
The present study has determined the hemodynamic significance of aortic arch obstruction using computational 
simulations to calculate the cardiac workload. These results suggest that all types of hypoplasia pose more of a 
workload challenge than coarctation with an equivalent degree of narrowing. 

Abbreviation and Acronym 
BSA body surface area 

 

Aortic coarctation and other arch obstructions interfere with normal flow through the aortic arch. Previous 
studies have been performed to determine the hemodynamic significance of these obstructions.1, 2 However, 
“aortic coarctation” is often used to describe a spectrum of arch obstructions that could comprise both localized 
and diffuse narrowing that occur in different regions along the aorta. Some classifications have separated diffuse 
narrowing from localized narrowing, but no uniform classification exists. In one classification, Bonnet described 
adult coarctation as a localized narrowing distal to the ductus arteriosus, and infantile coarctation was 
characterized by diffuse narrowing proximal to the ductus.3 In the present study, we refer to Bonnet's “infantile 
coarctation” as aortic hypoplasia, and “adult coarctation” as aortic coarctation. Although seemingly similar, 
aortic hypoplasia and aortic coarctation could have very different hemodynamic significance for the patient, 



even if the degree of narrowing is similar. In the present study, we sought to define aortic hypoplasia according 
to the location and degree in reference to the normal anatomy.4 Next, using computational simulations, we 
investigated the hemodynamic significance of the different types and degrees of aortic hypoplasia. 

Computational fluid dynamic simulations have been used extensively in the past to determine the 
complex hemodynamics associated with various congenital heart defects, mainly focusing on the Fontan 
circulation.5, 6, 7, 8 Recently, simulation tools were developed to allow the first realistic computational studies 
of 3-dimensional hemodynamics in patients with aortic coarctation.9, 10, 11 One of these tools replicates the 
function of the left ventricle with a circuit model and allows for the interaction between a 3-dimensional 
vascular model and the heart.9 From this circuit model, pressure-volume loops can be simulated, and the cardiac 
workload can be computed. This cardiac workload can then serve as a possible indicator of the hemodynamic 
severity of various aortic arch obstructions. 

The current assessment of the severity of arch obstruction relies on measurements of the diameter narrowing or 
the pressure decrease across the obstruction.12 However, a single determination of the percentage of narrowing 
might not be sufficient in cases of aortic hypoplasia, in which the narrowing is diffuse. In addition, late outcome 
morbidity is still present in many patients with repaired coarctation,13, 14 in whom a minimal pressure decrease 
would be expected. Thus, we propose the use of the cardiac workload as a metric for the hemodynamic severity 
of aortic arch obstruction. Because severe aortic coarctation is known to lead to heart failure if left 
untreated,14, 15 we used the severe aortic coarctation model as a benchmark for comparison when calculating 
the cardiac workload for the various types of aortic hypoplasia. In the present study, we sought to determine 
the cardiac workload associated with different types and degrees of aortic hypoplasia in the newborn 
population with the hope of aiding surgical decision making. 

Methods 
Patients 
Computed tomography angiography image data were collected from 4 patients with various types of aortic 
arch obstruction and 4 body surface area (BSA)–matched controls. All data were collected with Stanford 
University institutional review board approval. We used a classification scheme based on the location of the 
narrowing just as in aortic arch interruption16: type A, distal to the left subclavian artery; type B, distal to the left 
common carotid artery; and type C, distal to the right innominate. We added a type D (distal to the aortic 
valve and representing diffuse hypoplasia). Type C is extremely rare and was not included in the present 
analysis. The 4 patients included 1 with type A, 1 with type B, 1 with type D, and 1 with coarctation. The 4 BSA-
matched control patients were free of any cardiovascular disease. The computed tomography angiography 
image data were quantitatively analyzed to determine the aortic diameter at the sinotubular junction, proximal 
to the right innominate, distal to the left common carotid artery, distal to the left subclavian artery, and at the 
diaphragm. These measurements were then compared against the data collected by Aluquin and colleagues4 at 
the same aortic locations for normal subjects to quantify the degree of narrowing. The computational models 
for the 4 patients and their respective BSA-matched controls are shown in Figure 1. 

 
Figure 1. Three-dimensional models for each patient and corresponding body surface area (BSA)-matched 
control. 



 

Imaging Processing 
Three-dimensional patient-specific geometric models were constructed from the computed tomography 
angiography image data using custom software.17 In brief, approximate centerline paths were defined through 
the vessels of interest, the vessel boundaries were identified along the vessel, and all the previously determined 
vessel boundaries were connected to create the model. A finite element mesh was created from this model by 
dividing the 3-dimensional model into linear tetrahedrons.18 Additional models of type A and type 
B hypoplasia were created to represent tighter narrowing by scaling the entire hypoplastic segment until the 
desired degree of narrowing was achieved. 

Numeric Simulation 
The Navier-Stokes and continuity equations, representing conservation of momentum and mass of a Newtonian 
incompressible fluid, respectively, were solved on a finite element mesh of the 3-dimensional geometric model. 
The walls of the vessel were assumed to be deformable.19 The simulation also requires the prescription of 
boundary conditions at the termination point of each vessel (outlet) in the 3-dimensional model.20 These 
boundary conditions represent the vasculature that exists past each outlet and can be modeled with a simplified 
circuit model that represents the different components of the circulation. For the present analysis, a Windkessel 
model was prescribed at every outlet to represent the resistance of the proximal vessels, the capacitance of the 
proximal vessels, and the resistance of the distal vessels. In addition, a circuit model replicating the function of 
the heart was prescribed at the inlet of the model.9 This heart model includes resistors and inductors that 
represent the aortic valves, a pressure source that represents the left atrial pressure, and a variable capacitance 
that represents the left ventricular elastance (contractility) of the heart (see Figure E1). The boundary conditions 
for each of the normal patients were chosen such that a realistic heart rate, blood pressure, cardiac output, and 
flow through the aortic branches were simulated. A realistic heart rate and blood pressure for each patient were 
determined according to the patient's age,21, 22 and a realistic cardiac output was determined by the BSA and 
an assumed cardiac index of 3.5 L/min/m2.22 Realistic flow was calculated by assuming the flow scales linearly 
with the vessel cross-sectional area23; this was confirmed in a separate set of 20 patients with coarctation. 

Simulation Adaptation 
When all boundary conditions remained the same between those with hypoplasia and the normal patients, the 
cardiac output and flow through the descending aorta are reduced, representing the result of a change in 
geometry alone. However, the body will adapt to the narrowing; thus, to mimic the physiologic cardiac 
adaptations, we maintained the boundary conditions at all outlets and only modified the heart model boundary 
condition to allow for 1 of 2 scenarios: (1) maintaining cardiac output, and (2) maintaining the flow through the 
descending aorta (hiatus flow) with respect to the control levels. These 2 adaptations were chosen because they 
might form a boundary within which the true physiologic state of the patient will lie. Maintaining cardiac output 
represents the “best case” scenario, because, at a minimum, the heart needs to supply the same amount of flow 
to the entire body, regardless of the presence of a stenosis. Maintaining hiatus flow represents the “worst case” 
scenario, because an increase in cardiac output greater than the normal level is required to maintain flow to the 
descending aorta such that renal perfusion remains constant. The heart model was modified by increasing the 
maximum left ventricular elastance (contractility) of the model and left atrial pressure in an iterative fashion 
until the desired cardiac output or hiatus flow was achieved. All other boundary conditions remained the same; 
thus, both adaptations could be satisfied by only a change in cardiac output. The cardiac workload of the heart 
was calculated by taking the area within the pressure-volume loop. 

We also simulated another adaptation to represent a more physiologic state by incorporating vascular 
adaptation, such as vascular constriction of the cerebral vessels that is necessary to prevent overperfusion of the 



brain tissue as cardiac output increases. This adaptation will help relieve some of the burden on the heart, 
because the excess flow to the cerebral vessels is diverted to the descending aorta to help increase renal 
perfusion. Thus, if a substantial increase in the flow to the aortic branch vessels was observed, the boundary 
conditions at the outlets of the branch vessels were modified to achieve a new target branch flow based on the 
vessel cross-sectional area while maintaining flow through the aortic outlet. 

The preliminary results suggested that some of the simulations might result in unrealistic aortic pressure, cardiac 
output, and cardiac workload values, particularly in the models representing very tight narrowing. Thus, 
additional simulations were conducted for the tightest narrowing of the type A model, assuming a cardiac index 
of 2.5 L/min/m2, which would reflect the lower limit of the cardiac index found in humans and would represent a 
degree of cardiac dysfunction not uncommon with severe aortic obstruction. All other methods remained the 
same. 

Results 
The patient characteristics of the 4 patients are listed in Table 1. The original geometry of type A and 
B hypoplasia represented a 25% diameter narrowing, type D hypoplasia represented 50% narrowing, and 
coarctation represented 75% narrowing. Additional models of type A and B hypoplasia were created to 
represent 50% and 75% narrowing. Figure 2 shows the pressure at the aortic inlet, the pressure-volume loop of 
the left ventricle, and the pressure and flow at the aortic outlet for the patient with coarctation. Realistic aortic 
pressure waveforms were simulated, with a loss of pulsatility seen in the flow and pressure distal to the 
coarctation. As expected, the simulation demonstrated an elevated mean and pulse pressure in the ascending 
aorta, regardless of the adaptations incorporated. The greatest mean and pulse pressure occurred when 
maintaining hiatus flow without vascular adaptation. The same trends were also seen in the patients with 
hypoplasia. 

Table 1. Patient characteristics and associated clinical findings 

Patient Age 
(m) 

Gender Height 
(cm) 

Weight 
(kg) 

BSA 
(m2) 

Associated clinical findings 

Type A 0.4 Female 45 2.5 0.17 Small perimembranous VSD, moderate 
aortic stenosis, mild mitral stenosis 

Type B 0.2 Female 57 3.7 0.23 Small to moderate perimembranous VSD, 
tiny anterior midmuscular VSD 

Type D 36 Male 92 15.3 0.61 Williams syndrome, bilateral branch 
pulmonary artery stenosis 

Coarctation 8 Male 72 10.0 0.42 Subaortic membrane, bicuspid aortic valve, 
moderate aortic stenosis 

BSA, Body surface area; VSD, ventricular septal defect. 

 



Figure 2. For the coarctation patient and body surface area–matched control, (right) aortic pressure measured at 
the inlet of the model and the pressure-volume loop of the left ventricle are shown. Left, Pressure and flow at 
the hiatus are shown. In each graph, results from the body surface area–matched control (normal) are shown 
with the results from the coarctation patient reflecting each of the different adaptations. 
 

The cardiac workload was used as a metric to compare the significance of the different degrees and types of 
hypoplasia. The cardiac workload was normalized by determining the percentage of change in the workload 
from that of the BSA-matched control. The aortic pressure and percentage of change in workload for each 
patient under each adaptation is listed in Table 2. Compared with the control, coarctation required an increase 
in workload of 14.4% to maintain cardiac output and 132% to maintain hiatus flow. With vascular adaptation, 
the workload increased by 95% with respect to the control. The aortic pressure increased from the normal value 
of 95/53 to 112/61, 160/96, and 168/88 mm Hg to maintain cardiac output and hiatus flow with and without 
vascular adaptation, respectively. 

Table 2. Aortic pressure and percentage of workload change associated with each adaptation and each type and 
degree of aortic obstruction 

Obstruction type Narrowing 
(%) 

Aortic pressure 
(mm Hg) 

Workload change 
vs normal (%) 

Control 
   

 Coarctation 0 95/53 0 
 Type A 0 82/50 0 
 Type B 0 82/50 0 
 Type D 0 91/55 0 
Maintain cardiac output 

   

 Coarctation 75 112/61 14.4 
 Type A 25 81/52 −1.2  

50 87/52 4  
75 102/60 17.3 

 Type A, lower cardiac output 75 99/57 18.1 
 Type B 25 85/50 2.2  

50 99/50 17.7  
75 142/72 64.4 

 Type D 50 122/52 34.7 
Maintain flow 

   

 Coarctation 75 168/88 132 
 Type A 25 82/53 −0.1  

50 93/56 16.8  
75 287/120 289 

 Type A, lower cardiac output 75 144/82 155 
 Type B 25 88/51 8.6  

50 107/54 34.9  
75 427/162 692 

 Type D 50 123/53 37.4 
Maintain flow with vascular adaptation 

   

 Coarctation 75 160/96 96 



 Type A 75 232/127 221 
 Type A, lower cardiac output 75 144/82 155 
 Type B 75 311/143 265 

 

For type A hypoplasia, 25% and 50% narrowing did not result in appreciable changes in workload or pressure for 
any adaptation compared with coarctation. When maintaining cardiac output, the 75% narrowing geometry 
required a 17.3% increase in workload, comparable to the 14.4% increase seen with coarctation. To maintain 
hiatus flow without vascular adaptation, the workload increased by 289%; with vascular adaptation, the 
workload increased by 221%. The simulated aortic pressure for maintaining hiatus flow with and without 
adaptation was 232/127 and 287/120 mm Hg, respectively. These adaptations resulted in unrealistic values for 
workload and aortic pressure for an infant, motivating additional simulations with a reduced cardiac index. 

When a cardiac index of 2.5 L/min/m2 was assumed, the workload change and aortic pressure values were more 
reasonable. To maintain cardiac output, the workload increased by 18%. To maintain hiatus flow with and 
without vascular adaptation, the cardiac workload increased by 155% and the aortic pressure was 144/82 mm 
Hg for both cases. 

The original type B hypoplasia represented a 25% narrowing and was also modified to represent 50% and 75% 
narrowing. The 25% narrowing geometry resulted in slight increases in aortic pressure and workload when 
maintaining both cardiac output and hiatus flow. The 50% narrowing case increased pressure and workload 
substantially when maintaining cardiac output, requiring a 17.7% increase in workload, comparable to that seen 
with coarctation. Maintaining the hiatus flow required an increase in workload of 34.9% with respect to the 
control. This increase was less than those seen for coarctation when maintaining hiatus flow, which can be 
explained because the left subclavian artery received a smaller percentage of the cardiac output than in the 
normal case, so that the descending aorta can receive more flow. The 75% narrowing case resulted in extremely 
large increases in workload for maintaining hiatus flow with and without adaptation (>200%) and an extremely 
high aortic pressure, both unrealistic for the infant population and indicating that left ventricular failure would 
likely be found in these patients. 

Type D hypoplasia was characterized by a nearly uniform 50% narrowing of the entire aortic arch. Maintaining 
cardiac output resulted in large increases in the mean aortic pressure and an increase in the cardiac workload of 
35% with respect to the control. This increase was larger than that seen for coarctation under the same 
adaptation condition. A 37% increase in workload was required to maintain the flow at the hiatus. Because no 
discrete narrowing was present, the workload associated with maintaining flow was not expected to be 
appreciably different from that associated with maintaining cardiac output. In this case, the branch flows were 
not appreciably different from the control case, and vascular adaptation was not simulated. 

As shown with type B and D hypoplasia, the location of the narrowing or the absence of narrowing reduced the 
workload change associated with maintaining hiatus flow compared with coarctation. Thus, the workload 
change associated with maintaining cardiac output might represent the best method to compare each of the 
different types of hypoplasia. The percentage of increase in workload associated with maintaining cardiac 
output for each of the different types and degrees of aortic arch obstruction is shown in Figure 3. 



 
Figure 3. Comparison of the percentage of workload change required to maintain cardiac output for the 
different types and degrees of aortic obstruction. 
 

Discussion 
These results have demonstrated that we can successfully simulate realistic blood flow and pressure for a 
variety of different aortic arch obstructions. Using the simulation results, we can calculate the workload 
associated with aortic arch obstruction. The percentage of increase in workload was used as a metric for 
the hemodynamic significance of the narrowing. 

The simulation results for coarctation revealed a workload increase of 14% to maintain cardiac output, 132% to 
maintain hiatus flow, and 96% to maintain hiatus flow with vascular adaptation. The range of workload increase 
with the different adaptations was large, but this could be expected, because we intended to model the 
theoretical bounds to the level of cardiac workload with maintaining cardiac output and hiatus flow. The 
workload associated with incorporating vascular adaptation lies within these bounds but closer to the 
adaptation to maintain hiatus flow, suggesting that the true physiologic workload of the patient will be closer to 
the upper bound of workload. One study also investigated the workload associated with aortic coarctation and 
found a left ventricular workload increase of around 50% between a normal group and an aortic coarctation 
group.24 That study did not report the degree of stenosis of the aortic coarctation group; thus, a direct 
comparison with our study could not be made. However, a left ventricular workload increase of 50% also lies 
within the bounds defined by maintaining cardiac output and hiatus flow. In an additional study, left ventricular 
work was measured in normal patients and patients with aortic stenosis.25 That study found that patients with 
an aortic valve gradient of 74 mm Hg, considered severe aortic stenosis, had a 98% greater left ventricular stroke 
work compared with normal patients.25 Although the workload of aortic stenosis and aortic coarctation cannot 
be compared directly, we found that severe aortic coarctation requires an increased workload of up to 132%, 
similar to the increased workload seen with aortic stenosis. 

Varying degrees of type A hypoplasia were simulated and the original geometry, representing a 25% diameter 
narrowing, required essentially no increase in workload for any of the adaptations. In a clinical setting, this 
patient might have been treated solely because a narrowing existed. Our findings suggest this narrowing poses 
no clinical significance in terms of cardiac workload. Even when the narrowing was increased to 50%, the 
increases in workload were still small compared with those with coarctation. However, when the narrowing was 
increased to 75%, the increases in workload were 17% and 289% for maintaining cardiac output and maintaining 
hiatus flow, respectively, and extremely high blood pressures were simulated. This might suggest that 
maintaining normal levels of flow through the descending aorta is not possible for this set of patients. With the 
additional simulations assuming a cardiac index of 2.5 L/min/m2, the increase in workload was similar to that 
found for coarctation. Because a reduced cardiac output produces the same increases in workload as with the 



coarctation case, we have concluded that 75% narrowed type A hypoplasia is more hemodynamically significant 
than 75% narrowed coarctation, which would be expected because the hypoplastic segment is longer than the 
discrete coarctation. 

Varying degrees of type B hypoplasia were also simulated. Again, for the original geometry, representing 25% 
diameter narrowing, we found minimal change in the workload for any adaptation, even though the narrowing 
appeared quite significant. When maintaining cardiac output with 50% narrowing was simulated, the workload 
increased quite significantly and was similar to that required for coarctation and 75% type A hypoplasia. 
However, when modeling the adaptation to maintain hiatus flow, the workload required was not nearly as great 
as that required for coarctation or 75% type A hypoplasia. The location of the hypoplastic segment relieves some 
of the burden from the heart, because flow can be diverted directly from the left subclavian artery to the 
descending artery without passing any narrowing. With this added complexity, using the adaptation to maintain 
cardiac output might be the best method to compare the type B hypoplasia with coarctation and the other types 
of aortic hypoplasia. When comparing the workload associated with maintaining cardiac output, we found that 
50% type B hypoplasia was more hemodynamically significant than coarctation and 75% type A hypoplasia. 

Type D hypoplasia represents complete narrowing of the aortic arch. In this case, the workload associated with 
maintaining cardiac output was quite high compared with that for coarctation and the other types of hypoplasia. 
However, the workload to maintain hiatus flow was quite similar, because there was no discrete coarctation to 
pass to reach the aortic outlet that would change the distribution of cardiac output. Thus, using the adaptation 
to maintain cardiac output as the comparison point, we can conclude that 50% type D hypoplasia is more 
hemodynamically significant than coarctation, 75% type A hypoplasia, and 50% type B hypoplasia. In the present 
study, we chose not to model additional degrees of type D hypoplasia that might help determine when a patient 
should undergo surgery because no surgical solution exists for these patients. 

Study Limitations 
One limitation of the present study was that none of the adaptations modeled reflect the true physiologic 
adaptations that occur in response to aortic arch obstruction. However, the purpose of the study was not to 
determine the actual hemodynamics of each patient, but rather to compare the hemodynamics of the different 
types of obstruction. For this goal, we believe that simplifying the adaptations allowed more direct comparisons. 
The study was also limited by the small sample size. Although more patients would be ideal, the simulation 
process is complex and the patient population very small. However, we hope that the present study has 
demonstrated the power of computational simulations, because multiple different geometries were constructed 
from each patient that might may serve as a substitute for additional patients. Finally, many assumptions were 
made to determine the boundary conditions for the different models. At present, no methods are available to 
determine exactly what each boundary condition parameter should be for a particular patient. In particular, in 
this group of patients, only computed tomography scans were available, ruling out the possibility of 
using magnetic resonance imaging to acquire additional physiologic information. However, by using the same 
outlet boundary conditions between each patient and their respective controls and focusing on the changes in 
each hemodynamic parameter from the control value, we have removed some of the variability associated with 
the specific boundary conditions chosen. Once more physiologic information about specific patients becomes 
available, future studies can easily incorporate this information into the current method to yield more patient-
specific simulations. 

Conclusions 
In the present study, we used computer simulations to model the blood flow in patients with various aortic 
arch obstructions. By calculating the workload associated with each obstruction, we compared 
the hemodynamic significance of aortic coarctation and various types of aortic hypoplasia. We found that the 



workload associated with all types of aortic hypoplasia was larger than that for aortic coarctation of equivalent 
narrowing. The present study represents the first exploratory work to use computational simulations to 
understand a variety of different aortic arch obstructions and demonstrates a framework from which to build 
more realistic and patient-specific simulations. 

Appendix 

 
Figure E1. A, Three-dimensional model with inlet shown in yellow and labeled “A” and outlets shown in blue and 
labeled “1” to “4”. B, Outlets 1 to 4 are coupled to the Windkessel model. C, Inlet A is coupled to the heart 
model. Rp, Resistance of proximal, larger vessels; Rd, resistance of distal, smaller vessel; C, capacitance of 
proximal, larger vessels; PLA, left atrial pressure; RAV, mitral valve resistance; LAV, mitral valve inductance; E(t), left 
ventricular elastance; RV-Art, aortic valve resistance; LV-Art, aortic valve inductance. 
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