52 research outputs found

    The Role of Proactive Risk Assessments in Ensuring Business Continuity in the Swine Industry during an FMD Outbreak

    Get PDF
    Emerging and reemerging pathogens of food animals, such as Foot and Mouth Disease (FMD) and H5N1 highly pathogenic avian influenza (HPAI), have the potential to disrupt the supply of food commodities. In the event of an FMD outbreak in the United States, permit requests to move pigs and pork products must be supported by risk assessments (3)

    Tenacibaculosis in Norwegian Atlantic salmon (Salmo salar) cage-farmed in cold sea water is primarily associated with Tenacibaculum finnmarkense genomovar finnmarkense

    Get PDF
    Skin conditions associated with Tenacibaculum spp. constitute a significant threat to the health and welfare of sea-farmed Atlantic salmon (Salmo salar L.) in Norway. Fifteen presumptive tenacibaculosis outbreaks distributed along the Norwegian coast during the late winter and spring of 2018 were investigated. Bacteriological culture confirmed the presence of Tenacibaculum spp. Seventy-six isolates cultured from individual fish were selected and subjected to whole-genome sequencing and MALDI-TOF MS analysis. Average nucleotide identity and MALDI-TOF analyses confirmed the presence of T. finnmarkense and T. dicentrarchi, with further division of T. finnmarkense into genomovars (gv.) finnmarkense and ulcerans. Core genome multilocus sequence typing (cgMLST) and single-nucleotide polymorphism (SNP) analyses identified the presence of a genetically conserved cluster of gv. finnmarkense isolates against a background of relatively genetically diverse gv. finnmarkense and gv. ulcerans isolates in 13 of the 15 studied cases. This clustering strongly suggests a link between T. finnmarkense gv. finnmarkense and development of clinical tenacibaculosis in sea-farmed Norwegian salmon in the late winter and spring. Analysis of 25 Tenacibaculum isolates collected during the spring of 2019 from similar cases identified a similar distribution of genotypes. Low water temperatures were common to all cases, and most incidences involved relatively small fish shortly after sea transfer, suggesting that these fish are particularly predisposed to Tenacibaculum infection.publishedVersio

    Mapping the knowledge of the main diseases affecting sea bass and sea bream in Mediterranean

    Get PDF
    Good knowledge on the disease situation and its impact on production is a base mechanism for designing health surveillance, risk analysis and biosecurity systems. Mediterranean marine fish farming, as any aquaculture production, is affected by various infectious diseases. However, seabass and seabream, the main produced species, are not listed as susceptible host species for the notifiable pathogens listed in the current EU legislation, which generates a lack of systematic reporting. The results presented in this study come from a survey directly to fish farms (50 hatchery and ongrowing units from 10 Mediterranean countries), with data from 2015‐2017, conducted by the H2020 project MedAID. Seabass showed a higher survival rate (85%) through a production cycle than seabream (80%) in spite of equal mortality due to pathogen infections (10%). The differences in survival may be explained by mortality “of other causes”. Seabream and seabass have different disease profiles, and the profile is slightly different between geographical regions. Among the most important diseases, tenacibaculosis and vibriosis were identified in seabass and Sparicotyle chrysophrii (a gill fluke) and nodavirus in seabream. Correlating mortality data to management variables showed that increasing density, buying fingerlings from external sources, and treatments due to disease are factors that negatively influence mortality rate. Most of the surveyed farms did not keep sufficient quality data to implement good health status reports and perform detailed impact studies, which shows the necessity of updating the current legislative framework to provide the basis for better reporting of relevant pathogens in the Mediterranean basin.info:eu-repo/semantics/publishedVersio

    Bridging knowledge gaps in fish health management through education, research, and biosecurity

    Get PDF
    Education, research, and biosecurity have global recognition as strong pillars of sustainable aquaculture development. In many developing countries, insufficient knowledge and awareness among stakeholders regarding the relevance of education, research, and biosecurity have influenced aquaculture sustainability negatively. To uncover the gaps in education, research, and biosecurity practices in aquatic animal health management, we conducted a questionnaire-based study in various East and West African countries. By adopting the methodology of self-reporting data, we invited a significant number of individuals to participate in the study. In the end, 88 respondents contributed, with the majority from Ghana (47) and Kenya (20), and 21 respondents from five other East and West African nations. The results revealed substantial educational gaps, including the need for practical training in aquatic animal health management, nutrition, and genetics. Respondents also emphasized the importance of creating additional national aquaculture research institutions and augmented funding to enable them to address industry needs. Governments of the represented nations should actively intervene by providing the essential logistics and capacity to support aquaculture research and development. Informed government involvement is paramount for bridging the disconnection among all stakeholders, as revealed in the results. Furthermore, the lack of biosecurity measures and the understanding of the importance of biosecurity measures in the industry addressed through awareness creation. Creating awareness on biosecurity underpinned with national aquaculture biosecurity policies can prevent disease incidences in the industry. The outcomes of this study can serve as a vital working document to enhance aquatic animal health management in East and West Africa, thereby fostering sustainable and resilient aquaculture

    Understanding tilapia mortalities and fish health management in Lake Volta: a systematic approach

    Get PDF
    Unusual fish mortalities in aquaculture threaten global food security and carry significant socio-economic burdens. In 2018, Nile tilapia (Oreochromis niloticus) suffered unusual patterns of mortalities, attributed to disease-causing agents in Lake Volta cage aquaculture. In recent times, disease investigations have shifted from single to consideration of multiple factors to understand the puzzling range of causal risk factors. This study therefore aimed at expanding on tilapia mortality risk factors, while documenting fish health and Lake Volta management practices for sustainable aquaculture. We interviewed relevant aquaculture stakeholders operating on Lake Volta and conducted thematic analysis on their responses to map out mortality risk factors and management practices. The identified risk factors were conceptualized in established models of causation web and Social-Ecological System to explain the practical significance of the findings. The results showed that the risk factors of tilapia mortalities are a combination of pathogens and non-infectious factors mediated by weak law enforcement. The results further suggested mortality reinforcing mechanisms through the horizontal transmission of pathogens, namely, Streptococcus agalactiae and Infectious Spleen and Kidney Necrosis Virus. Moreover, the recognition of weak enforcement as a possible factor reinforcing human activities is a non-infectious route that can be deleterious to fish health. Health management practices comprised phytotherapy, vaccination, heat shock treatment, biological controls, and best husbandry practices. Lake management involves creating a waterfront buffer of 85.34 m, surveillance, and executing the framework guiding aquaculture development on the Lake. The findings are suggestive of complementary quantitative studies that augment the qualitative evidence herein. Such follow up studies can disclose precise mortality risk factors to inform policy directives and effective remedial strategies that can secure fish and lake health

    Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model

    Get PDF
    Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the “second wave” of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained

    Assessment of the Avian Influenza H5N1 surveillance system for backyard and free-range poultry production systems in Thailand

    No full text
     International Conference on Animal Health Surveillance (ICAHS), Lyon, France, 17-20 May, 2011International audienceFor infectious diseases, as highly pathogenic avian influenza virus H5N1 (A/H5N1 HP), the need for an early detection and warning mechanism is essential, especially when countries have been free of disease for an extended period of time. Evaluating the sensitivity and the expected cost of surveillance are necessary steps to ensure an efficient and sustainable system. Stochastic scenario tree modeling has been used here to assess the sensitivity of the A/H5N1 HP surveillance system in sector IV of Thailand. The whole process of disease detection, from passive surveillance to X-Ray, has been described and sensitivity of each component and of the overall system has been estimated. Scenarios, according to selection of high risk areas, inclusion of components or sampling procedure, have been tested and discussed

    Herd characteristics and management practices associated with seroprevalence of Mycobacterium avium subsp. paratuberculosis infection in dairy herds

    No full text
    abstract: Objective - To investigate herd characteristics and management practices associated with a high seroprevalence of Mycobacterium avium subsp. paratuberculosis (MAP) in dairy herds in central California. Sample Population - 60 randomly selected cows from each of 21 dairy herds. Procedures - Sera of selected cows were tested for antibodies against MAP by use of an ELISA test kit. Cows with a test sample-to-positive control sample (S:P) ratio of ≥0.25 were considered seropositive, and herds with ≥4% seropositive cows were considered high-seroprevalence herds. Data on herd characteristics and management practices were collected via interviews with owners. Bayesian logistic regression was used to model the predictive probability of a herd having a high seroprevalence on the basis of various herd characteristics and management practices. Results - 9 of 21 (43%) herds were classified as high-seroprevalence herds. Five variables (history of previous signs of paratuberculosis in the herd, herd size, exposing cattle to water from manure storage lagoons, feeding unsalable milk to calves, and exposing heifers ≤6 months old to manure of adult cows) were included in the predictive model on the basis of statistical and biological considerations. In large herds, the predictive probability of a high seroprevalence of MAP infection decreased from 0.74 to 0.39 when management changed from poor to good practices. In small herds, a similar decrease from 0.64 to 0.29 was predicted. Conclusions and Clinical Relevance - The seroprevalence of MAP infection in California dairies may be reduced by improvements in herd management practices
    corecore