70 research outputs found

    Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds

    Get PDF
    Abstract Background DNA barcoding of life using a standardized COI sequence was proposed as a species identification system, and as a method for detecting putative new species. Previous tests in birds showed that individuals can be correctly assigned to species in ~94% of the cases and suggested a threshold of 10× mean intraspecific difference to detect potential new species. However, these tests were criticized because they were based on a single maternally inherited gene rather than multiple nuclear genes, did not compare phylogenetically identified sister species, and thus likely overestimated the efficacy of DNA barcodes in identifying species. Results To test the efficacy of DNA barcodes we compared ~650 bp of COI in 60 sister-species pairs identified in multigene phylogenies from 10 orders of birds. In all pairs, individuals of each species were monophyletic in a neighbor-joining (NJ) tree, and each species possessed fixed mutational differences distinguishing them from their sister species. Consequently, individuals were correctly assigned to species using a statistical coalescent framework. A coalescent test of taxonomic distinctiveness based on chance occurrence of reciprocal monophyly in two lineages was verified in known sister species, and used to identify recently separated lineages that represent putative species. This approach avoids the use of a universal distance cutoff which is invalidated by variation in times to common ancestry of sister species and in rates of evolution. Conclusion Closely related sister species of birds can be identified reliably by barcodes of fixed diagnostic substitutions in COI sequences, verifying coalescent-based statistical tests of reciprocal monophyly for taxonomic distinctiveness. Contrary to recent criticisms, a single DNA barcode is a rapid way to discover monophyletic lineages within a metapopulation that might represent undiscovered cryptic species, as envisaged in the unified species concept. This identifies a smaller set of lineages that can also be tested independently for species status with multiple nuclear gene approaches and other phenotypic characters

    Phylogenetic and coalescent analysis of three loci suggest that the Water Rail is divisible into two species, Rallus aquaticus and R. indicus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Water Rails (<it>Rallus aquaticus</it>) inhabit fragmented freshwater wetlands across their Palearctic distribution. Disjunct populations are now thought to be morphologically similar over their vast geographic range, though four subspecies had been recognized previously. The fossil record suggests that Water Rails (<it>R. aquaticus</it>) were already spread across the Palearctic by the Pleistocene ~2 million years ago, and the oldest fossil remains thought to be closely related to the common ancestor of water rails date from the Pliocene.</p> <p>Results</p> <p>To investigate population structure in Water Rails at the genetic level we sequenced three independent loci: 686 base pairs (bp) of the mitochondrial DNA <it>COI </it>barcode; 618 bp of the intron <it>ADH5</it>; and 746 bp of the exon <it>PTPN12</it>. Phylogeographic analysis revealed that Water Rails breeding in eastern Asia (<it>R. a. indicus</it>, also known as the Brown-cheeked Rail) are strongly differentiated from the Water Rails in Western and Middle Asia and Europe (<it>R. a. aquaticus </it>and <it>R. a. korejewi</it>). The Kimura 3-parameter plus Gamma <it>COI </it>genetic distance between these two geographic groups was > 3%, and they differed by 18 diagnostic substitutions commensurate with differences between recently diverged sister species of birds. In spite of the low number of variable sites, the two nuclear loci supported this split. We estimated the split of the Brown-cheeked Rail and the Water Rail to have occurred ~534,000 years ago (95% CI 275,000-990,000 years ago). Fragmentation of the widespread ancestral population and eventual speciation of water rails is likely attributable to vicariance by a barrier formed by glacial cycles, continuous uplift of the Tibetan Plateau and increased sedimentation in deserts in southern Asia that originated in the Miocene.</p> <p>Conclusions</p> <p>Water Rails from East Asia were genetically differentiated from the ones breeding in Europe and Western to Middle Asia. Most of the genetic signal was from mitochondrial <it>COI</it>, and was corroborated by polymorphic sites in the two nuclear loci we employed. The split between these two lineages was estimated to occur in the Middle Pleistocene, when populations were isolated in disjunct wetlands with little or no gene flow. Independent evidence from differences in morphology and vocalizations in concert with genetic differentiation and a long history of isolation support recognition of the Brown-cheeked Rail breeding in East Asia as a separate species, <it>R. indicus</it>. The use of several independent loci is invaluable in inferring species trees from gene trees and in recognizing species limits.</p

    Quantitative determination of gemifloxacin mesylate in tablets by capillary zone electrophoresis and high performance liquid chromatography

    Get PDF
    The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher® 100 RP-8e, 5 μm (125 x 4 mm) column with a mobile phase composed of tetrahydrofuranwater (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 ºC. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 μm i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    DNA Barcode Detects High Genetic Structure within Neotropical Bird Species

    Get PDF
    BACKGROUND: Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. METHODS AND FINDINGS: Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520) of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21) or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20). Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. CONCLUSIONS: The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent geological periods

    High throughput simultaneous assay of atenolol and chlortalidone in combined dose tablets by liquid chromatography and capillary zone electrophoresis

    Get PDF
    New fast liquid chromatographic and capillary zone electrophoresis methods were developed and validated for simultaneous determination of atenolol and chlortalidone in combined dose tablets. The reversed phase HPLC method was carried out on a CN LiChrosorb® (125 x 4 mm, 5 μm) column. The CZE method was carried out on an uncoated fused-silica capillary of 30 cm x 75 μm i.d. with 25 mmol L-1 sodium tetraborate, pH 9.4. The total analysis time was <6 and <2.5 min for HPLC and CZE methods, respectively. Both methods can be used for stability studies as well.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    corecore