17 research outputs found

    Optimization of production of extracellular polymeric substances by Arthrobacter viscosus and their interaction with a 13X zeolite for the biosorption of Cr(VI)

    Get PDF
    In this work we aimed to optimize the production of extracellular polymeric substances (EPS) by an Arthrobacter viscosus biofilm supported on 13X zeolite to be used in the biosorption of Cr(VI). The optimization parameters were agitation rate, work volume, pH and glucose concentration. Following the optimization of EPS production, the biofilm was used in the biosorption of hexavalent Cr from liquid solutions. Differences between the use of dead or active biomass and between the performance of zeolite in powder or in pellet form were also studied. The optimized EPS production allowed values of metal uptake between 2.72 mg/gbiosorbent and 7.88 mg/gbiosorbent for initial Cr(VI) concentrations of 20–60 mg/L. For an initial concentration of 20 mg/L, the optimal conditions of EPS production allowed an increase of 10% on the removal percentage of total Cr, and the use of zeolite as a powder rather than the pelleted form produced an increase of 46.5% in the removal percentage. For the initial concentration of 60 mg/L, the use of active biomass compared to dried biomass allowed a reduction of the time required for the total removal of Cr(VI) from 20 to 13 days.The authors would like to gratefully acknowledge the financial support of this project by the Fundacao para a Ciencia e Tecnologia, Ministerio da Ciencia e Tecnologia, Portugal. Bruna Silva and Hugo Figueiredo thank FCT for a PhD grant and Cristina Quintelas thanks FCT for a Post Doctoral grant

    Os desafios na implanta??o de um projeto de horta escolar.

    Get PDF
    Este artigo consiste num relato de experi?ncia sobre hortas escolares desenvolvida em uma escola p?blica por bolsistas do subprojeto interdisciplinar em Ci?ncias do PIBID/UFOP. A horta foi eleita como uma estrat?gia para trabalhar conhecimentos cient?ficos e populares, de modo a favorecer a participa??o dos alunos e promover um ensino interdisciplinar. Entretanto, foram encontrados muitos desafios e obst?culos no in?cio do trabalho que exigiram pesquisas e busca de solu??es. Dessa forma, o artigo mostra como a atividade de planejamento se transformou em uma a??o investigativa por parte dos licenciandos e coordenadores do subprojeto

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Slow breathing influences cardiac autonomic responses to postural maneuver Slow breathing and HRV

    No full text
    Chronic slow breathing has been reported to improve Heart Rate Variability (HRV) in patients with cardiovascular disorders. However, it is not clear regarding its acute effects on HRV responses on autonomic analysis. We evaluated the acute effects of slow breathing on cardiac autonomic responses to postural change manoeuvre (PCM). The study was conducted on 21 healthy male students aged between 18 and 35 years old. In the control protocol, the volunteer remained at rest seated for 15 min under spontaneous breathing and quickly stood up within 3 s and remained standing for 15 min. In the slow breathing protocol, the volunteer remained at rest seated for 10 min under spontaneous breath, then performed slow breathing for 5 min and rapidly stood up within 3 s and remained standing for 15 min. Slow breathing intensified cardiac autonomic responses to postural maneuver. (C) 2016 Elsevier Ltd. All rights reserved.CNPqCentro de Estudos do Sistema Nervoso Autônomo (CESNA), Departamento de Fisioterapia e Terapia Ocupacional, Faculdade de Filosofia e Ciências, UNESP, Marília, SP, BrazilCardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United KingdomDisciplina de Cardiologia, Departamento de Medicina, UNIFESP, São Paulo, SP, BrazilDepartment of Environmental Health, Harvard Medical School of Public Health, Boston, MA, United StatesCentro de Estudos do Sistema Nervoso Autônomo (CESNA), Programa de Pós-Graduação em Fisioterapia, Faculdade de Ciências e Tecnologia, UNESP, Presidente Prudente, SP, BrazilDisciplina de Cardiologia, Departamento de Medicina, UNIFESP, São Paulo, SP, BrazilCNPq: 29360Web of Scienc
    corecore