36 research outputs found

    WS20.1 Role of transcription factors and microRNAs in CFTR gene expression

    Get PDF

    Large genomic rearrangements in the CFTR gene contribute to CBAVD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By performing extensive scanning of whole coding and flanking sequences of the <it>CFTR (Cystic Fibrosis Transmembrane Conductance Regulator</it>) gene, we had previously identified point mutations in 167 out of 182 (91.7%) males with isolated congenital bilateral absence of the vas deferens (CBAVD). Conventional PCR-based methods of mutation analysis do not detect gross DNA lesions. In this study, we looked for large rearrangements within the whole <it>CFTR </it>locus in the 32 CBAVD patients with only one or no mutation.</p> <p>Methods</p> <p>We developed a semi-quantitative fluorescent PCR assay (SQF-PCR), which relies on the comparison of the fluorescent profiles of multiplex PCR fragments obtained from different DNA samples. We confirmed the gross alterations by junction fragment amplification and identified their breakpoints by direct sequencing.</p> <p>Results</p> <p>We detected two large genomic heterozygous deletions, one encompassing exon 2 (c.54-5811_c.164+2186del8108ins182) [or <it>CFTRdele2</it>], the other removing exons 22 to 24 (c.3964-3890_c.4443+3143del9454ins5) [or <it>CFTRdele 22_24</it>], in two males carrying a typical CBAVD mutation on the other parental <it>CFTR </it>allele. We present the first bioinformatic tool for exon phasing of the <it>CFTR </it>gene, which can help to rename the exons and the nomenclature of small mutations according to international recommendations and to predict the consequence of large rearrangements on the open reading frame.</p> <p>Conclusion</p> <p>Identification of large rearrangements further expands the <it>CFTR </it>mutational spectrum in CBAVD and should now be systematically investigated. We have designed a simple test to specifically detect the presence or absence of the two rearrangements identified in this study.</p

    Nucleosome occupancy reveals regulatory elements of the CFTR promoter

    Get PDF
    Access to regulatory elements of the genome can be inhibited by nucleosome core particles arranged along the DNA strand. Hence, sites that are accessible by transcription factors may be located by using nuclease digestion to identify the relative nucleosome occupancy of a genomic region. In order to define novel cis regulatory elements in the ∼2.7-kb promoter region of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, we define its nucleosome occupancy. This profile reveals the precise positions of nucleosome-free regions (NFRs), both cell-type specific and others apparently unrelated to CFTR-expression level and offer the first high-resolution map of the chromatin structure of the entire CFTR promoter in relevant cell types. Several of these NFRs are strongly bound by nuclear factors in a sequence-specific manner, and directly influence CFTR promoter activity. Sequences within the NFR1 and NFR4 elements are highly conserved in many human gene promoters. Moreover, NFR1 contributes to promoter activity of another gene, angiopoietin-like 3 (ANGPTL3), while NFR4 is constitutively nucleosome-free in promoters genome wide. Conserved motifs within NFRs of the CFTR promoter also show a high level of protection from DNase I digestion genome-wide, and likely have important roles in the positioning of nucleosome core particles more generally

    Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice

    Get PDF
    It is often challenging for the clinician interested in cystic fibrosis (CF) to interpret molecular genetic results, and to integrate them in the diagnostic process. The limitations of genotyping technology, the choice of mutations to be tested, and the clinical context in which the test is administered can all influence how genetic information is interpreted. This paper describes the conclusions of a consensus conference to address the use and interpretation of CF mutation analysis in clinical settings

    In vivo

    No full text
    corecore