749 research outputs found
Intellectual Property Management Strategies to Accelerate the Development and Access of Vaccines and Diagnostics: Case Studies on Pandemic Influenza, Malaria and SARS
Achieving global access to vaccines, diagnostics, and pharmaceuticals remains a challenge. Throughout the developing world, intellectual property (IP) constraints complicate access to critically essential medical technologies and products. Vaccines for malaria and pandemic strains of influenza, as well as diagnostic and vaccine technologies for SARS, are not only relevant to global public health but are particularly critical to the needs of developing countries. A global access solution is urgently needed. This article offers a timely case‐by‐case analysis of preliminary patent landscape surveys and formulates options via patent pools and other forms of creative IP management to accelerate development and access. The analysis of the feasibility of patent pools reveals several impediments to patent pools: these include antitrust considerations, bargaining difficulties caused by asymmetric interests and asymmetric rights among IP holders (e.g. improvement vs. foundational patents), and the difficulties of securing financial support given the significant transaction costs associated with pools.
Because of the above conceptual and operational hurdles, patent pools do not appear to be a feasible way to accelerate development. Other mechanisms, however, can ameliorate IP constraints. For example, a key IP constraint related to pandemic influenza vaccines R&D appears to have been resolved when Medimmune secured the assembly of all relevant reverse genetics IP and pledged broad access. Clearly, the landscape is complex and multidimensional. Licensing systems are not the only issue. Measures must also be taken to limit regulatory hurdles and enable the swift, legal production of pandemic influenza vaccines to meet the needs of developing countries. This is why a comprehensive analysis is so necessary.
From a strictly legal perspective, IP systems work through the power to exclude. However, as this study’s exploration and formulation of creative licensing strategies reveals, it is also true that IP can be structured and managed to work through the “power to include.
Visual Attention for Region of Interest Coding in JPEG 2000
This paper details work undertaken on the application of an algorithm for visual attention (VA) to region of interest (ROI) coding in JPEG 2000 (JP2K). In this way, an "interest ordered" progressive bit-stream is produced where the regions highlighted by the VA algorithm are presented first in bit-stream. The paper briefly outlines the terminology used in JP2K, the packet structure of the bit-stream, and the methods available to achieve ROI coding in JP2K (tiling, coefficient scaling, and code-block selection). The paper then describes how the output of the VA algorithm is post-processed so that an ROI is produced that can be efficiently coded using coefficient scaling in JP2K. Finally, a two alternative forced choice (2AFC) visual trial is undertaken to compare the visual quality of images encoded using the proposed VA ROI algorithm and conventional JP2K. The experimental results show that, while there is no overall preference for the VA ROI encoded images; there is an improvement in perceived image quality at low bit rates (below 0.25 bits per pixel). It is concluded that an overall increase in image quality only occurs when the increase in quality of the ROI more than compensates for the decrease in quality of the image background (i.e., non-ROI)
A bio-inspired image coder with temporal scalability
We present a novel bio-inspired and dynamic coding scheme for static images.
Our coder aims at reproducing the main steps of the visual stimulus processing
in the mammalian retina taking into account its time behavior. The main novelty
of this work is to show how to exploit the time behavior of the retina cells to
ensure, in a simple way, scalability and bit allocation. To do so, our main
source of inspiration will be the biologically plausible retina model called
Virtual Retina. Following a similar structure, our model has two stages. The
first stage is an image transform which is performed by the outer layers in the
retina. Here it is modelled by filtering the image with a bank of difference of
Gaussians with time-delays. The second stage is a time-dependent
analog-to-digital conversion which is performed by the inner layers in the
retina. Thanks to its conception, our coder enables scalability and bit
allocation across time. Also, our decoded images do not show annoying artefacts
such as ringing and block effects. As a whole, this article shows how to
capture the main properties of a biological system, here the retina, in order
to design a new efficient coder.Comment: 12 pages; Advanced Concepts for Intelligent Vision Systems (ACIVS
2011
Globalisation, neo-liberalism and vocational learning: the case of English further education colleges
Further education (FE) has traditionally been a rather unspectacular activity. Lacking the visibility of schools or the prestige of universities, for the vast majority of its existence FE has had a relatively low profile on the margins of English education. Over recent years this situation has altered significantly and further education has undergone profound change. This paper argues that a combination of related factors – neo-liberalism, globalisation, and dominant discourses of the knowledge economy – has acted in synergy to transform FE into a highly performative and marketised sector. Against this backdrop, further education has been assigned a particular role based upon certain narrow and instrumental understandings of skill, employment and economic competitiveness. The paper argues that, although it has always been predominantly working class in nature, FE is now, more than ever, positioned firmly at the lower end of the institutional hierarchy in the highly class-stratified terrain of English education
Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis and Alzheimer’s disease
Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses specifically T- and B-cells in periodontitis and related conditions. In periodontitis this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces inflammatory responses related to T- and B-cell activation, and subsequent IFN-ɤ secretion by a subset of T cells. The T cells further suppresses upregulation of programmed cell death-1 (PD-1)-receptor on CD+-cells and its ligand PD-L1 on CD11b+- subset of T-cells. IL-2 down-regulates immune response-regulated genes, induces a cytokine pattern in which the Th17 lineage is favored thereby modulating the Th17/ T-regulatory cell (Treg) imbalance. The suppression of IFN-ɤ stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes, triggers distinct T-cell responses, and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis P. gingivalis reduces Tregs and transforming growth factor beta-1 (TGF-1) and causes imbalance in the Th17 lineage of the Treg population. In Alzheimer’s disease P. gingivalis may affect the blood-brain barrier permeability, and inhibit local IFN-ɤ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in Alzheimer’s disease neuropathology implies P. gingivalis infection of the brain likely causes impaired clearance of insoluble amyloid and induces immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies
Information, disturbance and Hamiltonian quantum feedback control
We consider separating the problem of designing Hamiltonian quantum feedback
control algorithms into a measurement (estimation) strategy and a feedback
(control) strategy, and consider optimizing desirable properties of each under
the minimal constraint that the available strength of both is limited. This
motivates concepts of information extraction and disturbance which are distinct
from those usually considered in quantum information theory. Using these
concepts we identify an information trade-off in quantum feedback control.Comment: 13 pages, multicol Revtex, 2 eps figure
My School? Critiquing the abstraction and quantification of education
This paper draws upon and critiques the Australian federal government's website My School as an archetypal example of the current tendency to abstract and quantify educational practice. Arguing in favour of a moral philosophical account of educational practice, the paper reveals how the My School website reduces complex educational practices to simple, supposedly objective, measures of student attainment, reflecting the broader 'audit' society/culture within which it is located. By revealing just how extensively the My School website reduces educational practices to numbers, the paper argues that we are in danger of losing sight of the 'internal' goods of Education which cannot be readily and simply codified, and that the teacher learning encouraged by the site marginalises more active and collective approaches. While having the potential to serve some beneficial diagnostic purposes, the My School website reinforces a view of teachers as passive consumers of information generated beyond their everyday practice
Feedback-control of quantum systems using continuous state-estimation
We present a formulation of feedback in quantum systems in which the best
estimates of the dynamical variables are obtained continuously from the
measurement record, and fed back to control the system. We apply this method to
the problem of cooling and confining a single quantum degree of freedom, and
compare it to current schemes in which the measurement signal is fed back
directly in the manner usually considered in existing treatments of quantum
feedback. Direct feedback may be combined with feedback by estimation, and the
resulting combination, performed on a linear system, is closely analogous to
classical LQG control theory with residual feedback.Comment: 12 pages, multicol revtex, revised and extende
Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data
Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant additional data. The Grayscale Softcopy Presentation State extension of the Digital Imaging and Communications in Medicine (DICOM) standard resolves this issue for two-dimensional (2D) data by introducing an extensive set of parameters, namely 2D Presentation States (2DPR), that describe how an image should be displayed. 2DPR allows storing these parameters instead of storing parameter applied images, which cause unnecessary duplication of the image data. Since there is currently no corresponding extension for 3D data, in this study, a DICOM-compliant object called 3D presentation states (3DPR) is proposed for the parameterization and storage of 3D medical volumes. To accomplish this, the 3D medical visualization process is divided into four tasks, namely pre-processing, segmentation, post-processing, and rendering. The important parameters of each task are determined. Special focus is given to the compression of segmented data, parameterization of the rendering process, and DICOM-compliant implementation of the 3DPR object. The use of 3DPR was tested in a radiology department on three clinical cases, which require multiple segmentations and visualizations during the workflow of radiologists. The results show that 3DPR can effectively simplify the workload of physicians by directly regenerating 3D renderings without repeating intermediate tasks, increase efficiency by preserving all user interactions, and provide efficient storage as well as transfer of visualized data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40846-015-0097-5) contains supplementary material, which is available to authorized users
The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects
Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors (PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPAR [Formula: see text] / [Formula: see text] and PPAR [Formula: see text]) were recently identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons. First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options
- …