318 research outputs found

    Temperature Dependent Polarity Reversal in Au/Nb:SrTiO3 Schottky Junctions

    Full text link
    We have observed temperature-dependent reversal of the rectifying polarity in Au/Nb:SrTiO3 Schottky junctions. By simulating current-voltage characteristics we have found that the permittivity of SrTiO3 near the interface exhibits temperature dependence opposite to that observed in the bulk, significantly reducing the barrier width. At low temperature, tunneling current dominates the junction transport due both to such barrier narrowing and to suppressed thermal excitations. The present results demonstrate that novel junction properties can be induced by the interface permittivity

    High sensitive X-ray films to detect electron showers in 100 GeV region

    Get PDF
    Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons

    Phase Diagram of β′\beta'-(BEDT-TTF)2_2ICl2_2 under High Pressure Based on the First-Principles Electronic Structure

    Full text link
    We present a theoretical study on the superconductivity of β′\beta'-(BEDT-TTF)2_2ICl2_2 at Tc=T_{\rm c}=14.2 K under a high hydrostatic pressure recently found, which is the highest among organic superconductors. In the present work, we study an effective model using the fluctuation-exchange (FLEX) approximation based on the results of first-principles calculation. In the obtained phase diagram, the superconductivity with dxyd_{xy}-like symmetry is realized next to the antiferromagnetic phase, as a result of the one-dimensional to two-dimensional crossover driven by the pressure.Comment: 4 pages, 3 figures. accepted for publication in J. Phys. Soc. Jpn. errors correcte

    Atmospheric gamma-ray observation with the BETS detectorfor calibrating atmospheric neutrino flux calculations

    Get PDF
    We observed atmospheric gamma-rays around 10 GeV at balloon altitudes (15~25 km) and at a mountain (2770 m a.s.l). The observed results were compared with Monte Carlo calculations to find that an interaction model (Lund Fritiof1.6) used in an old neutrino flux calculation was not good enough for describing the observed values. In stead, we found that two other nuclear interaction models, Lund Fritiof7.02 and dpmjet3.03, gave much better agreement with the observations. Our data will serve for examining nuclear interaction models and for deriving a reliable absolute atmospheric neutrino flux in the GeV region.We observed atmospheric gamma-rays around 10 GeV at balloon altitudes (15~25 km) and at a mountain (2770 m a.s.l). The observed results were compared with Monte Carlo calculations to find that an interaction model (Lund Fritiof1.6) used in an old neutrino flux calculation was not good enough for describing the observed values. In stead, we found that two other nuclear interaction models, Lund Fritiof7.02 and dpmjet3.03, gave much better agreement with the observations. Our data will serve for examining nuclear interaction models and for deriving a reliable absolute atmospheric neutrino flux in the GeV region

    Nucleation mechanism for the direct graphite-to-diamond phase transition

    Full text link
    Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrated that the large lattice distortions that accompany the formation of the diamond nuclei inhibit the phase transition at low pressure and direct it towards the hexagonal diamond phase at higher pressure. The nucleation mechanism proposed in this work is an important step towards a better understanding of structural transformations in a wide range of complex systems such as amorphous carbon and carbon nanomaterials

    High-Mass Cloud Cores in the eta Carinae Giant Molecular Cloud

    Full text link
    We carried out an unbiased survey for massive dense cores in the giant molecular cloud associated with eta Carinae with the NANTEN telescope in 12CO, 13CO, and C18O 1-0 emission lines. We identified 15 C18O cores. Two of the 15 cores are associated with IRAS point sources whose luminosities are larger than 10^4 Lo, which indicates that massive star formation is occuring within these cores. Five cores including the two with IRAS sources are associated with MSX point sources. We detected H13CO+ (1-0) emission toward 4 C18O cores, one of which is associated with neither IRAS nor MSX point sources. This core shows the presence of a bipolar molecular outflow in 12CO (2-1), which indicates that star formation is also occuring in the core. In total, six C18O cores out of 15 are experienced star formation, and at least 2 of 15 are massive-star forming cores in the eta Car GMC. We found that massive star formation occurs preferentially in cores with larger column density, mass, number density, and smaller ratio of virial mass to LTE mass Mvir/M. We also found that the cores in the eta Car GMC are characterized by large line width and Mvir/M on average compared to the cores in other GMCs. We investigated the origin of a large amount of turbulence in the eta Car GMC. We propose the possibility that the large turbulence was pre-existing when the GMC was formed, and is now dissipating. Mechanisms such as multiple supernova explosions in the Carina flare supershell may have contributed to form a GMC with a large amount of turbulence.Comment: 41 pages, including 11 fugures and 9 tables. Accepted by ApJ. Author changed. Paper with high resolution figures is available at http://astrol.cias.osakafu-u.ac.jp/~yonekura/work/paper/etaCar

    Probing magnetic turbulence by synchrotron polarimetry: statistics and structure of magnetic fields from Stokes correlators

    Full text link
    We describe a technique for probing the statistical properties of cosmic magnetic fields based on radio polarimetry data. Second-order magnetic field statistics like the power spectrum cannot always distinguish between magnetic fields with essentially different spatial structure. Synchrotron polarimetry naturally allows certain 4th-order magnetic field statistics to be inferred from observational data, which lifts this degeneracy and can thereby help us gain a better picture of the structure of the cosmic fields and test theoretical scenarios describing magnetic turbulence. In this work we show that a 4th-order correlator of physical interest, the tension-force spectrum, can be recovered from the polarized synchrotron emission data. We develop an estimator for this quantity based on polarized-emission observations in the Faraday-rotation-free frequency regime. We consider two cases: a statistically isotropic field distribution, and a statistically isotropic field superimposed on a weak mean field. In both cases the tension force power spectrum is measurable; in the latter case, the magnetic power spectrum may also be obtainable. The method is exact in the idealized case of a homogeneous relativistic-electron distribution that has a power-law energy spectrum with a spectral index p=3, and assumes statistical isotropy of the turbulent field. We carry out tests of our method using synthetic data generated from numerically simulated magnetic fields. We show that the method is valid, that it is not prohibitively sensitive to the value of the electron spectral index, and that the observed tension-force spectrum allows one to distinguish between, e.g., a randomly tangled magnetic field (a default assumption in many studies) and a field organized in folded flux sheets or filaments.Comment: Published on MNRAS 200

    Observation of Multi-Tev Diffuse Gamma Rays from the Galactic Plane with the Tibet Air Shower Array

    Get PDF
    Data from the Tibet-III air shower array (with energies around 3 TeV) and from the Tibet-II array (with energies around 10 TeV) have been searched for diffuse gamma rays from the Galactic plane. These arrays have an angular resolution of about 0.9 degrees. The sky regions searched are the inner Galaxy, 20 degrees <= l <= 55 degrees, and outer Galaxy, 140 degrees <= l <= 225 degrees, and |b| <= 2 degrees or <= 5 degrees. No significant Galactic plane gamma-ray excess was observed. The 99% confidence level upper limits for gamma-ray intensity obtained are (for |b| <= 2 degrees) 1.1 times 10^{-15} cm^{-2}s^{-1}sr^{-1}MeV^{-1} at 3 TeV and 4.1 times 10^{-17} cm^{-2}s^{-1}sr^{-1}MeV^{-1} at 10 TeV for the inner Galaxy, and 3.6 times 10^{-16} cm^{-2}s^{-1}sr^{-1}MeV^{-1} at 3 TeV and 1.3 times 10^{-17} cm^{-2}s^{-1}sr^{-1}MeV^{-1} at 10 TeV for the outer Galaxy, assuming a differential spectral index of 2.4. The upper limits are significant in the multi-TeV region when compared to those from Cherenkov telescopes in the lower energy region and other air shower arrays in the higher energy region; however, the results are not sufficient to rule out the inverse Compton model with a source electron spectral index of 2.0.Comment: 22 pages, 8 figures, Accepted for publication in Ap
    • …
    corecore