26 research outputs found

    Effects of the Selective Serotonin Reuptake Inhibitor Fluoxetine on Counterregulatory Responses to Hypoglycemia in Individuals With Type 1 Diabetes

    Get PDF
    OBJECTIVE—Previous work has demonstrated that chronic administration of the serotonin reuptake inhibitor (SSRI) fluoxetine augments counterregulatory responses to hypoglycemia in healthy humans. However, virtually no information exists regarding the effects of fluoxetine on integrated physiological counterregulatory responses during hypoglycemia in type 1 diabetes. Therefore, the specific aim of this study was to test the hypothesis that 6-week use of the SSRI fluoxetine would amplify autonomic nervous system (ANS) counterregulatory responses to hypoglycemia in individuals with type 1 diabetes

    Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial

    Get PDF
    Background Phenytoin is the recommended second-line intravenous anticonvulsant for treatment of paediatric convulsive status epilepticus in the UK; however, some evidence suggests that levetiracetam could be an effective and safer alternative. This trial compared the efficacy and safety of phenytoin and levetiracetam for second-line management of paediatric convulsive status epilepticus.Methods This open-label, randomised clinical trial was undertaken at 30 UK emergency departments at secondary and tertiary care centres. Participants aged 6 months to under 18 years, with convulsive status epilepticus requiring second-line treatment, were randomly assigned (1:1) using a computer-generated randomisation schedule to receive levetiracetam (40 mg/kg over 5 min) or phenytoin (20 mg/kg over at least 20 min), stratified by centre. The primary outcome was time from randomisation to cessation of convulsive status epilepticus, analysed in the modified intention-to-treat population (excluding those who did not require second-line treatment after randomisation and those who did not provide consent). This trial is registered with ISRCTN, number ISRCTN22567894.Findings Between July 17, 2015, and April 7, 2018, 1432 patients were assessed for eligibility. After exclusion of ineligible patients, 404 patients were randomly assigned. After exclusion of those who did not require second-line treatment and those who did not consent, 286 randomised participants were treated and had available data: 152 allocated to levetiracetam, and 134 to phenytoin. Convulsive status epilepticus was terminated in 106 (70%) children in the levetiracetam group and in 86 (64%) in the phenytoin group. Median time from randomisation to cessation of convulsive status epilepticus was 35 min (IQR 20 to not assessable) in the levetiracetam group and 45 min (24 to not assessable) in the phenytoin group (hazard ratio 1·20, 95% CI 0·91–1·60; p=0·20). One participant who received levetiracetam followed by phenytoin died as a result of catastrophic cerebral oedema unrelated to either treatment. One participant who received phenytoin had serious adverse reactions related to study treatment (hypotension considered to be immediately life-threatening [a serious adverse reaction] and increased focal seizures and decreased consciousness considered to be medically significant [a suspected unexpected serious adverse reaction]). Interpretation Although levetiracetam was not significantly superior to phenytoin, the results, together with previously reported safety profiles and comparative ease of administration of levetiracetam, suggest it could be an appropriate alternative to phenytoin as the first-choice, second-line anticonvulsant in the treatment of paediatric convulsive status epilepticus

    Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes

    Get PDF
    Tumor protein p53 (TP53) is the most frequently mutated gene in cancer1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease3,4, rapid transformation to acute myeloid leukemia (AML)5, resistance to conventional therapies6–8 and dismal outcomes9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R)11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response

    Effects of oral carbohydrate on autonomic nervous system counterregulatory responses during hyperinsulinemic hypoglycemia and euglycemia

    No full text
    The effects of oral carbohydrate on modulating counterregulatory responses in humans remain undecided. This study's specific aim was to determine the effects of oral carbohydrate on autonomic nervous system (ANS) and neuroendocrine responses during hyperinsulinemic hypoglycemia and euglycemia. Nineteen healthy volunteers were studied during paired, single blind experiments. Nine subjects underwent two-step glucose clamps consisting of 60 min of euglycemia (5.0 mmol/l) followed by either 15 g of oral carbohydrate (cal) as orange juice or a noncaloric control (nocal) and subsequent 90 min of clamped hypoglycemia (2.9 mmol/l). Ten other subjects underwent two randomized 150-min hyperinsulinemic-euglycemic clamps with cal or nocal control administered at 60 min. Oral carbohydrate initially blunted (P < 0.05) epinephrine, norepinephrine, cortisol, glucagon, pancreatic polypeptide, muscle sympathetic nerve activity (MSNA), symptom, and systolic blood pressure responses during hypoglycemia. However, by the end of 90 min of hypoglycemia, plasma epinephrine and norepinephrine responses had rebounded and were increased (P < 0.05) compared with control. MSNA and cortisol levels remained suppressed during hypoglycemia (P < 0.05) after cal, whereas pancreatic polypeptide, glucagon, symptom, and blood pressure responses increased similar to control following initial suppression. Oral carbohydrate had no effects on neuroendocrine or ANS responses during hyperinsulinemic euglycemia. These results demonstrate that oral carbohydrate can have differential effects on the time course of ANS and neuroendocrine responses during hypoglycemia. We conclude that gastro-splanchnic-portal sensing of an amount of carbohydrate recommended for use in clinical practice for correction of hypoglycemia can have widespread and significant effects on central nervous system mediated counterregulatory responses in healthy humans
    corecore