72 research outputs found

    First-Principles Semiclassical Initial Value Representation Molecular Dynamics

    Get PDF
    A method for carrying out semiclassical initial value representation calculations using first-principles molecular dynamics (FP-SC-IVR) is presented. This method can extract the full vibrational power spectrum of carbon dioxide from a single trajectory providing numerical results that agree with experiment even for Fermi resonant states. The computational demands of the method are comparable to those of classical single-trajectory calculations, while describing uniquely quantum features such as the zero-point energy and Fermi resonances. By propagating the nuclear degrees of freedom using first-principles Born-Oppenheimer molecular dynamics, the stability of the method presented is improved considerably when compared to dynamics carried out using fitted potential energy surfaces and numerical derivatives.Comment: 5 pages, 2 figures, made stylistic and clarity change

    Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    Get PDF
    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage.ope

    Kinetic model for UV/H2O2 degradation of 8-methoxypsoralen

    No full text
    The influence of Н2О2 on the degradation of 8-methoxypsoralen (8-MOP) in water-ethanol solutions under the action of KrCl and XeBr excilamp radiation in a photoreactor is investigated. A kinematic model of photodegradation of the investigated molecule is constructed. In water-ethanol solutions the addition of Н2О2 altered the mechanism of decay of 8-MOP under the action of a KrCl excilamp in comparison with irradiation by a XeBr excilamp. This behavior is explained by the fact that the action of 283 nm radiation leads to accumulation of a stable photoproduct. In order to establish the toxicity of this product further research is needed

    Electronic excitation and singlet-triplet coupling in uracil tautomers and uracil-water complexes

    No full text
    Electronic spectra of uracil in its diketo (lactam) form and five enol (lactim) tautomeric forms have been investigated by means of combined density functional and configuration interaction methods. We have simulated the effects of hydrogen bonding with a protic solvent by recomputing the spectrum of uracil in the presence of two, four, or six water molecules. Geometries of the electronic ground state and several low-lying excited states have been optimized. Spin-orbit coupling has been determined for correlated wavefunctions employing a non-empirical spin-orbit mean-field approach. In accord with experiment, we find the diketo tautomer to be the most stable one. The calculations confirm that the first absorption band arises from the 1(ππ\pi\to\pi^\ast) S0S2{\rm S}_0 \to {\rm S}_2 excitation. The experimentally observed vibrational structure in this band originates from a breathing mode of the six ring. Complexation with water molecules is seen to cause a significant blue shift of nπn\to\pi^\ast excitations while leaving ππ\pi\to\pi^\ast excitations nearly uninfluenced. Computed radiative lifetimes are presented for the experimentally known weak phosphorescence from the ππ\pi\to\pi^\ast excited T1 state. Among the uracil lactim tautomers, one is particularly interesting from a spectroscopic point of view. In this tautomer, the ππ\pi\to\pi^\ast  excitation gives rise to the S1 state

    Protonation-State-Driven Photophysics in Phenothiazinium Dyes: Intersystem Crossing and Singlet-Oxygen Production

    No full text
    The impact of altering the solvent pH value on the photodynamic activity of thionine has been studied computationally by means of density functional theory and multi‐reference interaction methods. To this end, we have investigated the electronic structure of the ground and excited states of diprotonated (TH22+) and neutral imine (T) forms of thionine (TH+). It is well known experimentally that the T1 state of TH+ undergoes acid–base equilibrium reactions resulting in a pronounced pH effect for the efficiency of singlet‐oxygen (1O2) production. Our results show that the energy‐transfer reactions from the T1 state of TH22+ and T to 3O2 correspond to reversible equilibrium processes, whereas in TH+ this process is very exothermic in a vacuum (−0.66 eV) and in aqueous solution (−0.49 eV). These facts explain the experimental observation of a much smaller efficiency of 1O2 production for TH22+ than for TH+. Moreover, we found that the pH value significantly effected the intersystem crossing (ISC) kinetics impacting the concentration of triplet‐state species available for energy transfer. In very acidic aqueous solution (pH22+ is the prevailing species, the ISC proceeds with a rate constant of ≈108 s−1. In a basic medium where T is the dominant species, ISC decay occurs by means of a thermally activated channel (≈108 s−1) which competes with fluorescence (5.32×107 s−1). According to these results, maximum ISC efficiency is expected for intermediate acidic pH values (TH+, ≈109 s−1)
    corecore