101 research outputs found

    Antitumor effect of IP-10 by using two different approaches: Live delivery system and gene therapy

    Get PDF
    Purpose: Immunotherapy is one of the treatment strategies for breast cancer, the most common cancer in women worldwide. In this approach, the patient�s immune system is stimulated to attack microscopic tumors and control metastasis. Here, we used interferon γ-induced protein 10 (IP-10), which induces and strengthens antitumor immunity, as an immunotherapeutic agent. We employed Leishmania tarentolae, a nonpathogenic lizard parasite that lacks the ability to persist in mammalian macrophages, was used as a live delivery system for carrying the immunotherapeutic agent. It has been already shown that arginase activity, and consequently, polyamine production, are associated with tumor progression. Methods: A live delivery system was constructed by stable transfection of pLEXSY plasmid containing the IP-10-enhanced green fluorescent protein (IP-10- egfp) fusion gene into L. tarentolae. Then, the presence of the IP-10-egfp gene and the accurate integration location into the parasite genome were confirmed. The therapeutic efficacy of IP- 10 delivered via L. tarentolae and recombinant pcDNA-(IP- 10-egfp) plasmid was compared by determining the arginase activity in a mouse 4T1 breast cancer model. Results: The pcDNA- (IP-10-egfp) group showed a significant reduction in tumor weight and growth. Histological evaluation also revealed that only this group demonstrated inhibition of metastasis to the lung tissue. The arginase activity in the tissue of the pcDNA-(IP- 10-egfp) mice significantly decreased in comparison with that in normal mice. No significant difference was observed in arginase activity in the sera of mice receiving other therapeutic strategies. Conclusion: Our data indicates that IP-10 immunotherapy is a promising strategy for breast cancer treatment, as shown in the 4T1-implanted BALB/c mouse model. However, the L. tarentolae- (IP-10-EGFP) live delivery system requires dose modifications to achieve efficacy in the applied regimen (six injections in 3 weeks). Our results indicate that the arginase assay could be a good biomarker to differentiate tumoral tissues from the normal ones. © 2016 Korean Breast Cancer Society. All rights reserved

    Role of polymorphisms of the endothelial nitric oxide synthase gene in predicting slow-flow phenomenon after primary percutaneous coronary intervention

    Get PDF
    Objective: The aim of the present study was to examine the association between 2 polymorphisms of the endothelial nitric oxide (eNOS) gene (-786T>C and +894G>T) and the no-reflow/slow-flow phenomenon in post-primary percutaneous coronary intervention (PPCI) patients. Methods: A total of 103 post-PPCI patients were enrolled. Coronary no-reflow phenomenon was defined as a Thrombolysis in Myocardial Infarction (TIMI) flow grade 0-1 and coronary slow-flow phenomenon (CSFP) was defined as a TIMI flow grade �2. Results: Due to the small number of post-PPCI patients with the no-reflow phenomenon (n=4), the primary comparison was made between CSFP (n=20) and normal flow (n=83) groups. There was a greater frequency of CSFP among carriers of the-786C allele of the eNOS-786T>C polymorphism (odds ratio OR: 3.90; 95% confidence interval CI: 0.87-17.45; p=0.07). However, no such association was detected between the +894T allele of the eNOS +894G>T and CSFP (OR: 0.92; 95% CI: 0.21-3.98; p=0.91). In the adjusted analysis, the-786T>C polymorphism did not reach statistical significance. Conclusion: There was no significant association between CSFP and 2 of the most common polymorphisms of the eNOS gene in post-PPCI patients. © 2020 Turkish Society of Cardiology

    DNA plasmid coding for Phlebotomus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica

    Get PDF
    Background: The vector-borne disease leishmaniasis is transmitted to humans by infected female sand flies, which transmits Leishmania parasites together with saliva during blood feeding. In Iran, cutaneous leishmaniasis (CL) is caused by Leishmania (L.) major and L. tropica, and their main vectors are Phlebotomus (Ph.) papatasi and Ph. sergenti, respectively. Previous studies have demonstrated that mice immunized with the salivary gland homogenate (SGH) of Ph. papatasi or subjected to bites from uninfected sand flies are protected against L. major infection. Methods and results: In this work we tested the immune response in BALB/c mice to 14 different plasmids coding for the most abundant salivary proteins of Ph. sergenti. The plasmid coding for the salivary protein PsSP9 induced a DTH response in the presence of a significant increase of IFN-γ expression in draining lymph nodes (dLN) as compared to control plasmid and no detectable PsSP9 antibody response. Animals immunized with whole Ph. sergenti SGH developed only a saliva-specific antibody response and no DTH response. Mice immunized with whole Ph. sergenti saliva and challenged intradermally with L. tropica plus Ph. sergenti SGH in their ears, exhibited no protective effect. In contrast, PsSP9-immunized mice showed protection against L. tropica infection resulting in a reduction in nodule size, disease burden and parasite burden compared to controls. Two months post infection, protection was associated with a significant increase in the ratio of IFN-γ to IL-5 expression in the dLN compared to controls. Conclusion: This study demonstrates that while immunity to the whole Ph. sergenti saliva does not induce a protective response against cutaneous leishmaniasis in BALB/c mice, PsSP9, a member of the PpSP15 family of Ph. sergenti salivary proteins, provides protection against L. tropica infection. These results suggest that this family of proteins in Ph. sergenti, Ph. duboscqi and Ph. papatasi may have similar immunogenic and protective properties against different Leishmania species. Indeed, this anti-saliva immunity may act as an adjuvant to accelerate the cell-mediated immune response to co-administered Leishmania antigens, or even cause the activation of infected macrophages to remove parasites more efficiently. These findings highlight the idea of applying arthropod saliva components in vaccination approaches for diseases caused by vector-borne pathogens. © 2019, Public Library of Science. All rights reserved

    C-Terminal Domain Deletion Enhances the Protective Activity of cpa/cpb Loaded Solid Lipid Nanoparticles against Leishmania major in BALB/c Mice

    Get PDF
    Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis with an annual incidence of approximately 2 million cases and is endemic in 88 countries, including Iran. CL's continued spread, along with rather ineffectual treatments and drug-resistant variants emergence has increased the need for advanced preventive strategies. We studied Type II cysteine proteinase (CPA) and Type I (CPB) with its C-terminal extension (CTE) as cocktail DNA vaccine against murine and canine leishmaniasis. However, adjuvants' success in enhancing immune responses to selected antigens led us to refocus our vaccine development programs. Herein, we discuss cationic solid lipid nanoparticles' (cSLN) ability to improve vaccine-induced protective efficacy against CL and subsequent lesion size and parasite load reduction in BALB/c mice. For this work, we evaluated five different conventional as well as novel parasite detection techniques, i.e., footpad imaging, footpad flowcytometry and lymph node flowcytometry for disease progression assessments. Vaccination with cSLN-cpa/cpb-CTE formulation showed highest parasite inhibition at 3-month post vaccination. Immunized mice showed reduced IL-5 level and significant IFN-ã increase, compared to control groups. We think our study represents a potential future and a major step forward in vaccine development against leishmaniasis

    Imaging of morphological and biochemical hallmarks of apoptosis with optimized optogenetic tools

    Get PDF
    Creation of optogenetic switches for specific activation of cell death pathways can provide insights into apoptosis and could also form a basis for noninvasive, next-generation therapeutic strategies. Previous work has demonstrated that cryptochrome 2 (Cry2)/cryptochrome-interacting β helix–loop–helix (CIB), a blue light–activated protein–protein dimerization module from the plant Arabidopsis thaliana, together with BCL2-associated X apoptosis regulator (BAX), an outer mitochondrial membrane–targeting pro-apoptotic protein, can be used for light-mediated initiation of mitochondrial outer membrane permeabilization (MOMP) and downstream apoptosis. In this work, we further developed the original light-activated Cry2-BAX system (hereafter referred to as OptoBAX) by improving the photophysical properties and light-independent interactions of this optogenetic switch. The resulting optogenetic constructs significantly reduced the frequency of light exposure required for membrane permeabilization activation and also decreased dark-state cytotoxicity. We used OptoBAX in a series of experiments in Neuro-2a and HEK293T cells to measure the timing of the dramatic morphological and biochemical changes occurring in cells after light-induced MOMP. In these experiments, we used OptoBAX in tandem with fluorescent reporters to image key events in early apoptosis, including membrane inversion, caspase cleavage, and actin redistribution. We then used these data to construct a timeline of biochemical and morphological events in early apoptosis, demonstrating a direct link between MOMP-induced redistribution of actin and apoptosis progression. In summary, we created a next-generation Cry2/CIB–BAX system requiring less frequent light stimulation and established a timeline of critical apoptotic events, providing detailed insights into key steps in early apoptosis.ECU Open Access Publishing Support Fun

    Tannic acid as a natural antioxidant compound: Discovery of a potent metabolic enzyme inhibitor for a new therapeutic approach in diabetes and Alzheimer's disease

    No full text
    PubMed: 30974029Multiple studies have been recorded on the synthesis and design of multi-aim anti-Alzheimer molecules. Using dual butyrylcholinesterase/acetylcholinesterase inhibitor molecules has attracted more interest in the therapy for Alzheimer's disease. In this study, a tannic acid compound showed excellent inhibitory effects against acetylcholine esterase (AChE), ?-glycosidase, ?-amylase, and butyrylcholinesterase (BChE). IC50 values of tannic acid obtained 11.9 nM against ?-glycosidase and 3.3 nM against ?-amylase, respectively. In contrast, Ki values were found of 50.96 ± 2.18 µM against AChE and 53.17 ± 4.47 µM against BChE. ?-Glycosidase inhibitor compounds can be utilized as a novel group of antidiabetic drugs. By competitively decreasing glycosidase activity, these inhibitor molecules help to hamper the fast breakdown of sugar molecules and thereby control the blood sugar level. © 2019 Wiley Periodicals, Inc

    Novel green synthesis and antioxidant, cytotoxicity, antimicrobial, antidiabetic, anticholinergics, and wound healing properties of cobalt nanoparticles containing Ziziphora clinopodioides Lam leaves extract

    Get PDF
    The aim of the experiment was a green synthesis of cobalt nanoparticles from the aqueous extract of Ziziphora clinopodioides Lam (CoNPs) and assessment of their cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing properties. The synthesized CoNPs were characterized using different techniques including UV-Vis., FT-IR spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to the XRD analysis, 28.19 nm was measured for the crystal size of NPs. TEM and SEM images exhibited a uniform spherical morphology and average diameters of 29.08 nm for the biosynthesized nanoparticles. Agar diffusion tests were done to determine the antibacterial and antifungal characteristics. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) were specified by macro-broth dilution assay. CoNPs indicated higher antibacterial and antifungal effects than many standard antibiotics (p <= 0.01). Also, CoNPs prevented the growth of all bacteria at 2-4 mg/mL concentrations and removed them at 2-8 mg/mL concentrations (p <= 0.01). In the case of antifungal effects of CoNPs, they inhibited the growth of all fungi at 1-4 mg/mL concentrations and destroyed them at 2-16 mg/mL concentrations (p <= 0.01). The synthesized CoNPs had great cell viability dose-dependently and indicated this method was nontoxic. DPPH free radical scavenging test was done to assess the antioxidant potentials, which revealed similar antioxidant potentials for CoNPs and butylated hydroxytoluene. In vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control, treatment with Eucerin basal ointment, treatment with 3 tetracycline ointment, treatment with 0.2 Co(NO3)(2) ointment, treatment with 0.2 Z. clinopodioides ointment, and treatment with 0.2 CoNPs ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3x3 cm section was prepared from all dermal thicknesses at day 10. Use of CoNPs ointment in the treatment groups substantially raised (p <= 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate and remarkably decreased (p <= 0.01) the wound area, total cells, neutrophil, and lymphocyte compared to other groups. In conclusion, CoNPs can be used as a medical supplement owing to their non-cytotoxic, antioxidant, antibacterial, antifungal, and cutaneous wound healing effects. Additionally, the novel nanoparticles (Co(NO3)(2) and CoNPs) were good inhibitors of the alpha -glycosidase, and cholinesterase enzymes
    corecore