126 research outputs found

    Absence of Ca2+-stimulated adenylyl cyclases leads to reduced synaptic plasticity and impaired experience-dependent fear memory

    Get PDF
    Ca2+-stimulated adenylyl cyclase (AC) 1 and 8 are two genes that have been shown to play critical roles in fear memory. AC1 and AC8 couple neuronal activity and intracellular Ca2+ increases to the production of cyclic adenosine monophosphate and are localized synaptically, suggesting that Ca2+-stimulated ACs may modulate synaptic plasticity. Here, we first established that Ca2+-stimulated ACs modulate protein markers of synaptic activity at baseline and after learning. Primary hippocampal cell cultures showed that AC1/AC8 double-knockout (DKO) mice have reduced SV2, a synaptic vesicle protein, abundance along their dendritic processes, and this reduction can be rescued through lentivirus delivery of AC8 to the DKO cells. Additionally, phospho-synapsin, a protein implicated in the regulation of neurotransmitter release at the synapse, is decreased in vivo 1 h after conditioned fear (CF) training in DKO mice. Importantly, additional experiments showed that long-term potentiation deficits present in DKO mice are rescued by acutely replacing AC8 in the forebrain, further supporting the idea that Ca2+-stimulated AC activity is a crucial modulator of synaptic plasticity. Previous studies have demonstrated that memory is continually modulated by gene–environment interactions. The last set of experiments evaluated the effects of knocking out AC1 and AC8 genes on experience-dependent changes in CF memory. We showed that the strength of CF memory in wild-type mice is determined by previous environment, minimal or enriched, whereas memory in DKO mice is unaffected. Thus, overall these results show that AC1 and AC8 modulate markers of synaptic activity and help integrate environmental information to modulate fear memory

    Identification and Characterization of Novel Mutations in the Human Gene Encoding the Catalytic Subunit Calpha of Protein Kinase A (PKA)

    Get PDF
    The genes PRKACA and PRKACB encode the principal catalytic (C) subunits of protein kinase A (PKA) CΞ± and CΞ², respectively. CΞ± is expressed in all eukaryotic tissues examined and studies of CΞ± knockout mice demonstrate a crucial role for CΞ± in normal physiology. We have sequenced exon 2 through 10 of PRKACA from the genome of 498 Norwegian donors and extracted information about PRKACA mutations from public databases. We identified four interesting nonsynonymous point mutations, Arg45Gln, Ser109Pro, Gly186Val, and Ser263Cys, in the CΞ±1 splice variant of the kinase. CΞ± variants harboring the different amino acid mutations were analyzed for kinase activity and regulatory (R) subunit binding. Whereas mutation of residues 45 and 263 did not alter catalytic activity or R subunit binding, mutation of Ser109 significantly reduced kinase activity while R subunit binding was unaltered. Mutation of CΞ± Gly186 completely abrogated kinase activity and PKA type I but not type II holoenzyme formation. Gly186 is located in the highly conserved DFG motif of CΞ± and mutation of this residue to Val was predicted to result in loss of binding of ATP and Mg2+, which may explain the kinetic inactivity. We hypothesize that individuals born with mutations of Ser109 or Gly186 may be faced with abnormal development and possibly severe disease

    Bordetella Adenylate Cyclase Toxin Mobilizes Its Ξ²2 Integrin Receptor into Lipid Rafts to Accomplish Translocation across Target Cell Membrane in Two Steps

    Get PDF
    Bordetella adenylate cyclase toxin (CyaA) binds the Ξ±MΞ²2 integrin (CD11b/CD18, Mac-1, or CR3) of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC) enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin β€˜translocation intermediate’, which can be β€˜locked’ in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the β€˜intermediate’ permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the β€˜translocation intermediate’ promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol

    Genetic Control of Resistance to Trypanosoma brucei brucei Infection in Mice

    Get PDF
    Trypanosoma brucei are extracellular protozoa transmitted to mammalian host by the tsetse fly. They developed several mechanisms that subvert host's immune defenses. Therefore analysis of genes affecting host's resistance to infection can reveal critical aspects of host-parasite interactions. Trypanosoma brucei brucei infects many animal species including livestock, with particularly severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to T. b. brucei. However, genes controlling susceptibility to this parasite have not been mapped. We analyzed the genetic control of survival after T. b. brucei infection using CcS/Dem recombinant congenic (RC) strains, each of which contains a different random set of 12.5% genes of their donor parental strain STS/A on the BALB/c genetic background. The RC strain CcS-11 is even more susceptible to parasites than BALB/c or STS/A. In F2 hybrids between BALB/c and CcS-11 we detected and mapped four loci, Tbbr1-4 (Trypanosoma brucei brucei response 1–4), that control survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have independent effects, Tbbr3 (chromosome 7) and Tbbr4 (chromosome 19) were detected by their mutual inter-genic interaction. Tbbr2 was precision mapped to a segment of 2.15 Mb that contains 26 genes

    Anthrax Edema Toxin Modulates PKA- and CREB-Dependent Signaling in Two Phases

    Get PDF
    Background: Anthrax edema toxin (EdTx) is an adenylate cyclase which operates in the perinuclear region of host cells. However, the action of EdTx is poorly understood, especially at molecular level. The ability of EdTx to modulate cAMPdependent signaling was studied in Jurkat T cells and was compared with that of other cAMP-rising agents: Bordetella pertussis adenylate cyclase toxin, cholera toxin and forskolin. Methodology/Principal Findings: EdTx caused a prolonged increase of the intracellular cAMP concentration. This led to nuclear translocation of the cAMP-dependent protein kinase (PKA) catalytic subunit, phosphorylation of cAMP response element binding protein (CREB) and expression of a reporter gene under control of the cAMP response element. Neither p90 ribosomal S6 kinase nor mitogen- and stress-activated kinase, which mediate CREB phosphorylation during T cell activation, were involved. The duration of phospho-CREB binding to chromatin correlated with the spatio-temporal rise of cAMP levels. Strikingly, EdTx pre-treated T cells were unresponsive to other stimuli involving CREB phosphorylation such as addition of forskolin or T cell receptor cross-linking. Conclusions/Significance: We concluded that, in a first intoxication phase, EdTx induces PKA-dependent signaling, which culminates in CREB phosphorylation and activation of gene transcription. Subsequently CREB phosphorylation is impaired and therefore T cells are not able to respond to cues involving CREB. The present data functionally link the perinuclea

    Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    Get PDF
    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2RΞ±, IL-4RΞ±, and IL-12RΞ²2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response

    Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs

    Get PDF
    Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-Ξ±) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment

    The Movember Global Action Plan 1 (GAP1): Unique Prostate Cancer Tissue Microarray Resource

    Get PDF
    BackgroundThe need to better understand the molecular underpinnings of the heterogeneous outcomes of patients with prostate cancer is a pressing global problem and a key research priority for Movember. To address this, the Movember Global Action Plan 1 Unique tissue microarray (GAP1-UTMA) project constructed a set of unique and richly annotated tissue microarrays (TMA) from prostate cancer samples obtained from multiple institutions across several global locations.MethodsThree separate TMA sets were built that differ by purpose and disease state.ResultsThe intended use of TMA1 (Primary Matched LN) is to validate biomarkers that help determine which clinically localized prostate cancers with associated lymph node metastasis have a high risk of progression to lethal castration-resistant metastatic disease, and to compare molecular properties of high-risk index lesions within the prostate to regional lymph node metastases resected at the time of prostatectomy. TMA2 (Pre vs. Post ADT) was designed to address questions regarding risk of castration-resistant prostate cancer (CRPC) and response to suppression of the androgen receptor/androgen axis, and characterization of the castration-resistant phenotype. TMA3 (CRPC Met Heterogeneity)'s intended use is to assess the heterogeneity of molecular markers across different anatomic sites in lethal prostate cancer metastases.ConclusionsThe GAP1-UTMA project has succeeded in combining a large set of tissue specimens from 501 patients with prostate cancer with rich clinical annotation.ImpactThis resource is now available to the prostate cancer community as a tool for biomarker validation to address important unanswered clinical questions around disease progression and response to treatment.</p
    • …
    corecore