48 research outputs found

    Selection of antigenically advanced variants of seasonal influenza viruses.

    Get PDF
    Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. We also selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014-2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature.This work was supported by the Bill & Melinda Gates Foundation Global Health Grant OPPGH5383; National Institute of Allergy and Infectious Diseases (NIAID) Public Health Service research grants (USA); ERATO (Japan Science and Technology Agency); the Center for Research on Influenza Pathogenesis (CRIP) funded by the NIAID Contracts HHSN266200700010C and HHSN27 2201400008C; the Japan Initiative for Global Research Network on Infectious Diseases; Grants-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; Grants-in-Aid from the Ministry of Health, Labour and Welfare, Japan; grants from the Strategic Basic Research Program of the Japan Science and Technology Agency; and by the Advanced Research & Development Programs for Medical Innovation from the Japan Agency for Medical Research and Development (AMED). C.A.R. was supported by a University Research Fellowship from the Royal Society. The authors acknowledge a Netherlands Organisation for Scientific Research (NWO) VICI grant, European Union (EU) FP7 programs EMPERIE (223498) and ANTIGONE (278976); Human Frontier Science Program (HFSP) program grant P0050/2008; Wellcome 087982AIA; and NIH Director's Pioneer Award DP1-OD000490-01. D.F.B and D.J.S. acknowledge CamGrid, the University of Cambridge distributed computer system. The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nmicrobiol.2016.5

    Selection of antigenically advanced variants of seasonal influenza viruses

    Get PDF
    Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent se

    Global circulation patterns of seasonal influenza viruses vary with antigenic drift.

    Get PDF
    Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.T.B. was supported by a Newton International Fellowship from the Royal Society and through NIH U54 GM111274. S.R. was supported by MRC (UK, Project MR/J008761/1), Wellcome Trust (UK, Project 093488/Z/10/Z), Fogarty International Centre (USA, R01 TW008246‐01), DHS (USA, RAPIDD program), NIGMS (USA, MIDAS U01 GM110721‐01) and NIHR (UK, Health Protection Research Unit funding). The Melbourne WHO Collaborating Centre for Reference and Research on Influenza was supported by the Australian Government Department of Health and thanks N. Komadina and Y.‐M. Deng. The Atlanta WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza was supported by the U.S. Department of 13 Health and Human Services. NIV thanks A.C. Mishra, M. Chawla‐Sarkar, A.M. Abraham, D. Biswas, S. Shrikhande, AnuKumar B, and A. Jain. Influenza surveillance in India was expanded, in part, through US Cooperative Agreements (5U50C1024407 and U51IP000333) and by the Indian Council of Medical Research. M.A.S. was supported through NSF DMS 1264153 and NIH R01 AI 107034. Work of the WHO Collaborating Centre for Reference and Research on Influenza at the MRC National Institute for Medical Research was supported by U117512723. P.L., A.R. & M.A.S were supported by EU Seventh Framework Programme [FP7/2007‐2013] under Grant Agreement no. 278433-­‐PREDEMICS and ERC Grant agreement no. 260864. C.A.R. was supported by a University Research Fellowship from the Royal Society.This is the author accepted manuscript. It is currently under infinite embargo pending publication of the final version

    Diagnostic significance of Aspergillus species isolated from respiratory samples in an adult pneumology ward.

    Get PDF
    Although the diagnostic significance of isolating Aspergillus spp. from respiratory cultures has been studied in immunocompromised hosts with invasive pulmonary aspergillosis (IPA), little is known of such infections in immunocompetent patients with other forms of aspergillosis. In this study of adult pneumology ward patients, we examined the association between Aspergillus spp. and disease prevalence. Laboratory records from April 1998 to March 2009 were reviewed to identify patients with Aspergillus spp. in respiratory samples. Correlations between the isolated species and clinical characteristics of patients were evaluated. During the study period, 165 Aspergillus spp. isolates were detected in the respiratory cultures of 139 patients. Of these patients, 62 (45%) were colonized with Aspergillus spp. and displayed no clinical symptoms of aspergillosis, while 77 (55%) had a form of pulmonary aspergillosis, characterized as either chronic necrotizing pulmonary aspergillosis (CNPA) (48%), aspergilloma (29%), IPA (13%), or allergic bronchopulmonary aspergillosis (ABPA) (10%). The dominant species were Aspergillus fumigatus (41%), A. niger (32%), and A. versicolor (12%). A. fumigatus was most commonly isolated in patients with IPA, aspergilloma, and CNPA, whereas A. niger was the dominant species in colonized patients and those with ABPA. Isolation of an Aspergillus spp. from respiratory samples does not confirm it as the etiologic pathogen because airway colonization by Aspergillus spp. is a common feature in several chronic lung diseases. Repeated isolation of the identical Aspergillus species and detection of anti-Aspergillus antibodies and/or Aspergillus antigens in sera are needed to determine the isolate represents the etiologic agent of disease

    Flowcharts for the management of biliary tract and ampullary carcinomas

    Get PDF
    No strategies for the diagnosis and treatment of biliary tract carcinoma have been clearly described. We developed flowcharts for the diagnosis and treatment of biliary tract carcinoma on the basis of the best clinical evidence. Risk factors for bile duct carcinoma are a dilated type of pancreaticobiliary maljunction (PBM) and primary sclerosing cholangitis. A nondilated type of PBM is a risk factor for gallbladder carcinoma. Symptoms that may indicate biliary tract carcinoma are jaundice and pain in the upper right area of the abdomen. The first step of diagnosis is to carry out blood biochemistry tests and ultrasonography (US) of the abdomen. The second step of diagnosis is to find the local extension of the carcinoma by means of computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance cholangiopancreatography (MRCP), percutaneous transhepatic cholangiography (PTC), and endoscopic retrograde cholangiopancreatography (ERCP). Because resection is the only way to completely cure biliary tract carcinoma, the indications for resection are determined first. In patients with resectable disease, the indications for biliary drainage or portal vein embolization (PVE) are checked. In those with nonresectable disease, biliary stenting, chemotherapy, radiotherapy, and/or best supportive care is selected

    International laboratory comparison of influenza microneutralization assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) influenza viruses by CONSISE

    Get PDF
    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HAMNassay protocols to enable better correlation of these assays in the future

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore