248 research outputs found

    The Normal State Resistivity of Grain Boundaries in YBa2Cu3O7-delta

    Full text link
    Using an optimized bridge geometry we have been able to make accurate measurements of the properties of YBa2Cu3O7-delta grain boundaries above Tc. The results show a strong dependence of the change of resistance with temperature on grain boundary angle. Analysis of our results in the context of band-bending allows us to estimate the height of the potential barrier present at the grain boundary interface.Comment: 11 pages, 3 figure

    Normal state properties of high angle grain boundaries in (Y,Ca)Ba2Cu3O7-delta

    Full text link
    By lithographically fabricating an optimised Wheatstone bridge geometry, we have been able to make accurate measurements of the resistance of grain boundaries in Y1-xCaxBa2Cu3O7-d between the superconducting transition temperature, Tc, and room temperature. Below Tc the normal state properties were assessed by applying sufficiently high currents. The behaviour of the grain boundary resistance versus temperature and of the conductance versus voltage are discussed in the framework charge transport through a tunnel barrier. The influence of misorientation angle, oxygen content, and calcium doping on the normal state properties is related to changes of the height and shape of the grain boundary potential barrier.Comment: 17 pages, 1 table, 5 figures, submitted to PR

    Improving high-T_c dc-SQUID performance by junction asymmetry

    Full text link
    We study noise and noise energy of a high-Tc_c dc SQUID fabricated on a high-ϵR\epsilon_R substrate whose conduction properties are given by transmission line physics. We show that transmission line resonances greatly enhance the noise. Remarkably, resistance asymmetry enhances these resonances even more. However, as the transfer function scales the same way, the noise energy is reduced by asymmetry greatly enhancing the flexibility and performance of the SQUID.Comment: 9 pages, 4 figures. v2: published versio

    Designing environmental research for impact

    Get PDF
    Transdisciplinary research, involving close collaboration between researchers and the users of research, has been a feature of environmental problem solving for several decades, often spurred by the need to find negotiated outcomes to intractable problems. In 2005, the Australian government allocated funding to its environment portfolio for public good research, which resulted in consecutive four-year programmes (Commonwealth Environmental Research Facilities, National Environmental Research Program). In April 2014, representatives of the funders, researchers and research users associated with these programmes met to reflect on eight years of experience with these collaborative research models.This structured reflection concluded that successful multi-institutional transdisciplinary research is necessarily a joint enterprise between funding agencies, researchers and the end users of research. The design and governance of research programmes need to explicitly recognise shared accountabilities among the participants, while respecting the different perspectives of each group. Experience shows that traditional incentive systems for academic researchers, current trends in public sector management, and loose organisation of many end users, work against sustained transdisciplinary research on intractable problems, which require continuity and adaptive learning by all three parties. The likelihood of research influencing and improving environmental policy and management is maximised when researchers, funders and research users have shared goals; there is sufficient continuity of personnel to build trust and sustain dialogue throughout the research process from issue scoping to application of findings; and there is sufficient flexibility in the funding, structure and operation of transdisciplinary research initiatives to enable the enterprise to assimilate and respond to new knowledge and situations

    Mobile π\pi-kinks and half-integer zero-field-like steps in highly discrete alternating 0π0-\pi Josephson junction arrays

    Full text link
    The dynamics of a one-dimensional, highly discrete, linear array of alternating 00- and π\pi- Josephson junctions is studied numerically, under constant bias current at zero magnetic field. The calculated current - voltage characteristics exhibit half-integer and integer zero-field-like steps for even and odd total number of junctions, respectively. Inspection of the instantaneous phases reveals that, in the former case, single π\pi-kink excitations (discrete semi-fluxons) are supported, whose propagation in the array gives rise to the 1/21/2-step, while in the latter case, a pair of π\pi-kink -- π\pi-antikink appears, whose propagation gives rise to the 11-step. When additional 2π2\pi-kinks are inserted in the array, they are subjected to fractionalization, transforming themselves into two closely spaced π\pi-kinks. As they propagate in the array along with the single π\pi-kink or the π\pi-kink - π\pi-antikink pair, they give rise to higher half-integer or integer zero-field-like steps, respectively.Comment: 7 pages, 8 figures, submitted to Supercond. Sci. Techno

    Cancers associated with Kaposi's sarcoma (KS) in AIDS: a link between KS herpesvirus and immunoblastic lymphoma

    Get PDF
    Kaposi's sarcoma (KS), common among persons with acquired immunodeficiency syndrome (AIDS), is caused by KS herpesvirus (KSHV) but whether KSHV causes other malignancies is uncertain. Using linked United States AIDS and cancer registries, we measured the incidence of specific malignancies in persons with AIDS (4–27 months after AIDS onset). We identified associations with KSHV by calculating a relative risk: cancer incidence in persons with KS (all were KSHV-infected) divided by incidence in persons without KS. Using Poisson regression, relative risks were adjusted for human immunodeficiency virus risk group, gender, age, race, and calendar year. We included 189 159 subjects (26 972 with KS). Immunoblastic lymphoma was significantly associated with KS (506 cases; relative risks: unadjusted 2.44, 95%CI 2.00–2.96, adjusted 1.58, 95%CI 1.29–1.93). Only one immunoblastic lymphoma had pleura as primary site. None of 37 other specified malignancies (other non-Hodgkin lymphomas, haematological malignancies, solid tumours) was significantly associated with KS. In summary, the association of immunoblastic lymphoma with KS was specific among examined malignancies and remained significant after statistical adjustment. Our findings, and the previously demonstrated presence of KSHV in the histologically related primary effusion lymphoma, suggest that KSHV is involved in the pathogenesis of some immunoblastic lymphomas. © 2001 Cancer Research Campaig

    Proximity and Josephson effects in superconductor - antiferromagnetic Nb / \gamma-Fe50Mn50 heterostructures

    Full text link
    We study the proximity effect in superconductor (S), antiferromagnetic (AF) bilayers, and report the fabrication and measurement of the first trilayer S/AF/S Josephson junctions. The disordered f.c.c. alloy \gamma-Fe50Mn50 was used as the AF, and the S is Nb. Micron and sub-micron scale junctions were measured, and the scaling of JC(dAF)J_C (d_AF) gives a coherence length in the AF of 2.4 nm, which correlates with the coherence length due to suppression of TCT_C in the bilayer samples. The diffusion constant for FeMn was found to be 1.7 \times 104^{-4} m2^2 s1^-1, and the density of states at the Fermi level was also obtained. An exchange biased FeMn/Co bilayer confirms the AF nature of the FeMn in this thickness regime.Comment: 6 pages, 5 figures, accepted for Phys. Rev.

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure
    corecore