137 research outputs found

    Potential applications of digital, visible, and infrared data from geostationary environmental satellites

    Get PDF
    An hourly, digital data base from the Visible/Infrared Spin-Scan Radiometer (VISSR) instrument on the GOES-1 and SMS-2 geostationary satellites is described. Several examples of developmental applications of these quantitative digital data are presented. These include a review of recent attempts to develop products that are of use to meteorologists who provide services to aviation, agriculture, forestry, hydrology, oceanography, and climatology. The sample products include high resolution thermal gradients of land and ocean surfaces, thermal change analyses, fruit frost/freeze application, cloud-top altitude analysis, analysis of hurricane characteristics, and analyses of solar insolation

    Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density

    Get PDF
    AbstractA novel secreted glycoprotein that regulates bone resorption has been identified. The protein, termed Osteoprotegerin (OPG), is a novel member of the TNF receptor superfamily. In vivo, hepatic expression of OPG in transgenic mice results in a profound yet nonlethal osteopetrosis, coincident with a decrease in later stages of osteoclast differentiation. These same effects are observed upon administration of recombinant OPG into normal mice. In vitro, osteoclast differentiation from precursor cells is blocked in a dose-dependent manner by recombinant OPG. Furthermore, OPG blocks ovariectomy-associated bone loss in rats. These data show that OPG can act as a soluble factor in the regulation of bone mass and imply a utility for OPG in the treatment of osteoporosis associated with increased osteoclast activity

    Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat

    Full text link
    © 2015, Springer Science+Business Media New York. Nitrogen (N) fertilization is crucial for the growth and development of wheat crops, and yet increased use of N can also result in increased stripe rust severity. Stripe rust infection and N deficiency both cause changes in foliar physiological activity and reduction in plant pigments that result in chlorosis. Furthermore, stripe rust produce pustules on the leaf surface which similar to chlorotic regions have a yellow color. Quantifying the severity of each factor is critical for adopting appropriate management practices. Eleven widely-used vegetation indices, based on mathematic combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate and quantify stripe rust severity and N deficiency in a rust-susceptible wheat variety (H45) under varying conditions of nitrogen status. The physiological reflectance index (PhRI) and leaf and canopy chlorophyll index (LCCI) provided the strongest correlation with levels of rust infection and N-deficiency, respectively. When PhRI and LCCI were used in a sequence, both N deficiency and rust infection levels were correctly classified in 82.5 and 55 % of the plots at Zadoks growth stage 47 and 75, respectively. In misclassified plots, an overestimation of N deficiency was accompanied by an underestimation of the rust infection level or vice versa. In 18 % of the plots, there was a tendency to underestimate the severity of stripe rust infection even though the N-deficiency level was correctly predicted. The contrasting responses of the PhRI and LCCI to stripe rust infection and N deficiency, respectively, and the relative insensitivity of these indices to the other parameter makes their use in combination suitable for quantifying levels of stripe rust infection and N deficiency in wheat crops under field conditions

    Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae

    Get PDF
    Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), gives rise to devastating crop losses in rice. Disease resistant rice cultivars are the most economical way to combat the disease. The TP309 cultivar is susceptible to infection by Xoo strain PXO99. A transgenic variety, TP309_Xa21, expresses the pattern recognition receptor Xa21, and is resistant. PXO99△raxST, a strain lacking the raxST gene, is able to overcome Xa21-mediated immunity. We used a single extraction solvent to demonstrate comprehensive metabolomics and transcriptomics profiling under sample limited conditions, and analyze the molecular responses of two rice lines challenged with either PXO99 or PXO99△raxST. LC–TOF raw data file filtering resulted in better within group reproducibility of replicate samples for statistical analyses. Accurate mass match compound identification with molecular formula generation (MFG) ranking of 355 masses was achieved with the METLIN database. GC–TOF analysis yielded an additional 441 compounds after BinBase database processing, of which 154 were structurally identified by retention index/MS library matching. Multivariate statistics revealed that the susceptible and resistant genotypes possess distinct profiles. Although few mRNA and metabolite differences were detected in PXO99 challenged TP309 compared to mock, many differential changes occurred in the Xa21-mediated response to PXO99 and PXO99△raxST. Acetophenone, xanthophylls, fatty acids, alkaloids, glutathione, carbohydrate and lipid biosynthetic pathways were affected. Significant transcriptional induction of several pathogenesis related genes in Xa21 challenged strains, as well as differential changes to GAD, PAL, ICL1 and Glutathione-S-transferase transcripts indicated limited correlation with metabolite changes under single time point global profiling conditions

    Visual laterality in dolphins: importance of the familiarity of stimuli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies of cerebral asymmetries in different species lead, on the one hand, to a better understanding of the functions of each cerebral hemisphere and, on the other hand, to develop an evolutionary history of hemispheric laterality. Our animal model is particularly interesting because of its original evolutionary path, i.e. return to aquatic life after a terrestrial phase. The rare reports concerning visual laterality of marine mammals investigated mainly discrimination processes. As dolphins are migrant species they are confronted to a changing environment. Being able to categorize new versus familiar objects would allow dolphins a rapid adaptation to novel environments. Visual laterality could be a prerequisite to this adaptability. To date, no study, to our knowledge, has analyzed the environmental factors that could influence their visual laterality.</p> <p>Results</p> <p>We investigated visual laterality expressed spontaneously at the water surface by a group of five common bottlenose dolphins (<it>Tursiops truncatus</it>) in response to various stimuli. The stimuli presented ranged from very familiar objects (known and manipulated previously) to familiar objects (known but never manipulated) to unfamiliar objects (unknown, never seen previously). At the group level, dolphins used their left eye to observe very familiar objects and their right eye to observe unfamiliar objects. However, eyes are used indifferently to observe familiar objects with intermediate valence.</p> <p>Conclusion</p> <p>Our results suggest different visual cerebral processes based either on the global shape of well-known objects or on local details of unknown objects. Moreover, the manipulation of an object appears necessary for these dolphins to construct a global representation of an object enabling its immediate categorization for subsequent use. Our experimental results pointed out some cognitive capacities of dolphins which might be crucial for their wild life given their fission-fusion social system and migratory behaviour.</p

    Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons

    Get PDF
    Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment

    Recent advances of metabolomics in plant biotechnology

    Get PDF
    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    Development of a Unifying Target and Consensus Indicators for Global Surgical Systems Strengthening: Proposed by the Global Alliance for Surgery, Obstetric, Trauma, and Anaesthesia Care (The G4 Alliance)

    Get PDF
    After decades on the margins of primary health care, surgical and anaesthesia care is gaining increasing priority within the global development arena. The 2015 publications of the Disease Control Priorities third edition on Essential Surgery and the Lancet Commission on Global Surgery created a compelling evidenced-based argument for the fundamental role of surgery and anaesthesia within cost-effective health systems strengthening global strategy. The launch of the Global Alliance for Surgical, Obstetric, Trauma, and Anaesthesia Care in 2015 has further coordinated efforts to build priority for surgical care and anaesthesia. These combined efforts culminated in the approval of a World Health Assembly resolution recognizing the role of surgical care and anaesthesia as part of universal health coverage. Momentum gained from these milestones highlights the need to identify consensus goals, targets and indicators to guide policy implementation and track progress at the national level. Through an open consultative process that incorporated input from stakeholders from around the globe, a global target calling for safe surgical and anaesthesia care for 80% of the world by 2030 was proposed. In order to achieve this target, we also propose 15 consensus indicators that build on existing surgical systems metrics and expand the ability to prioritize surgical systems strengthening around the world
    corecore