84 research outputs found

    What determines the success and failure of environmental crowdfunding?

    Get PDF
    Online crowdfunding can help address the perennial financial shortfalls in environmental conservation and management. Although many online crowdfunding campaigns fail to collect any funds due to not achieving their targets, little is known about what drives success. To address this knowledge gap, we applied a mixed-methods approach to data from 473 successful and failed campaigns hosted on the online crowdfunding platform Readyfor. We found that fundraising performance varied by topic, with campaigns on pet animal management outperforming those focussed on landscape management and sustainable use. We also found that marketing strategies associated with online findability and increased reach through social networks, increased fundraising success. However, the existence of other environmental campaigns running simultaneously, reduced the chance of success, which implies that the selecting popular topics does not always increase the likelihood of success due to increased competition. Wider applications of marketing could enhance the ability of environmental crowdfunding campaigns to raise funds

    Affinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: Identification of novel peptidic inhibitors.

    Get PDF
    MDM2 and MDMX are oncoproteins that negatively regulate the activity and stability of the tumor suppressor protein p53. The inhibitors of protein-protein interactions (PPIs) of MDM2-p53 and MDMX-p53 represent potential anticancer agents. In this study, a novel approach for identifying MDM2-p53 and MDMX-p53 PPI inhibitor candidates by affinity-based screening using a chemical array has been established. A number of compounds from an in-house compound library, which were immobilized onto a chemical array, were screened for interaction with fluorescence-labeled MDM2 and MDMX proteins. The subsequent fluorescent polarization assay identified several compounds that inhibited MDM2-p53 and MDMX-p53 interactions

    How are fine sediments described in sediment sheet flow?

    Get PDF
    Stony debris flow transits to sediment sheet flow when the river bed gradient becomes gentle. The sediment sheet flow consists of a water flow layer and a sediment moving layer. Fine sediments are expected to behave as a part of the fluid rather than a solid phase in the sediment moving layer. Further, it can be thought that a part of fine sediment can be suspended in the water flow layer. However, it was not possible to physically express whether the fine sediment behaves as a solid phase or a fluid phase in the numerical simulation model. Here we physically modeled fine sediment behavior in sediment sheet flow. We confirmed the applicability of the new model to describe the longitudinal deposited sediment gradient in flume experiments

    Strongly Blueshifted Phenomena Observed with {\it Hinode}/EIS in the 2006 December 13 Solar Flare

    Full text link
    We present a detailed examination of strongly blueshifted emission lines observed with the EUV Imaging Spectrometer on board the {\it Hinode} satellite. We found two kinds of blueshifted phenomenon associated with the X3.4 flare that occurred on 2006 December 13. One was related to a plasmoid ejection seen in soft X-rays. It was very bright in all the lines used for the observations. The other was associated with the faint arc-shaped ejection seen in soft X-rays. The soft X-ray ejection is thought to be an MHD fast-mode shock wave. This is therefore the first spectroscopic observation of an MHD fast-mode shock wave associated with a flare.Comment: 18 pages, 1 table, 6 figures. ApJ, accepte

    Changes of tumor and normal structures of the neck during radiation therapy for head and neck cancer requires adaptive strategy

    Get PDF
    The treatment period over which radiation therapy is administered extends over several weeks. Since tumor shrinkage in response to radiation therapy and weight loss due to radiation-induced mucositis may impact on the dose distribution in both target and organ at risk in patients with head and neck cancer, the anatomical changes of tumor and neck volumes during this period should be taken into consideration. We investigated the anatomical changes that occurred in the target and normal structure of the neck during radiation therapy for pharyngeal cancer, and evaluated the necessity of an adaptive strategy. Ten patients with pharyngeal cancer who underwent radical chemoradiation therapy using 3-dimensional conformal radiation therapy RT (66-70 Gy in 33-35 fractions) between April 2009 and September 2010 were enrolled in the study. Patients underwent CT scans every week during their course of treatment. We analyzed the CT data in the radiation treatment planning system and measured changes of tumor, organ at risk, and neck volume. Gross tumor volume (GTV) was rapidly reduced by 28% of the original volume on average in the first 3 weeks. The right and left submandibular glands volume decreased to 70% and 63% of their initial volumes on average, respectively. The volume of the neck in the radiation fields decreased to 89% of its initial volume on average by the sixth week mainly caused by body weight loss due to acute radiation morbidity. Considerable anatomical change in the radiation filed that will affect dose distribution of the target and organ at risk was observed during radiation therapy for head and neck cancer

    Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP)

    Get PDF
    Chromosphere, the transition layer of the sun is a region to switch to the magnetic pressure dominated from plasma pressure dominated, simultaneous observation of the detailed magnetic field measurement and plasma of dynamic phenomenon here is what is the frontier of the next solar physics. As This is a challenge that has just mentioned, even the next solar observation satellite plan SOLAR-C, in the experiments we had used a NASA sounding rocket for the first time in the SOLAR-C plan, will address the chromosphere-transition layer magnetic field measurement there. It is, is a Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) plan, the linear polarization of Lyman emission lines chromosphere-transition layer shoots (121.6nm) were detected in 0.1 percent of high accuracy, a new technique called Hanre effect I get the magnetic field information of chromosphere-transition layer. In Japan, the US and Europe joint observation in November 2012 as a rocket experiment is adopted to NASA this plan that full-scale start-up, start from assembly work is 2014 spring flight observation device, currently, it is where the alignment of the optical elements have been implemented. After this, it is planned to continue with the performance evaluation towards the observation implementation of summer 2015. In addition to once again explain the contents of the plan In this presentation, we report an overview of the entire development and preparation current status

    Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon

    Full text link
    A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: 71Mn, 73,74Fe, 76Co, 79Ni, 81,82Cu, 84,85Zn, 87Ga, 90Ge, 95Se, 98Br, 101Kr, 103Rb, 106,107Sr, 108,109Y, 111,112Zr, 114,115Nb, 115,116,117Mo, 119,120Tc, 121,122,123,124Ru, 123,124,125,126Rh, 127,128Pd, 133Cd, 138Sn, 140Sb, 143Te, 145I, 148Xe, and 152Ba

    Solar Lyman-Alpha Polarization Observation of the Chromosphere and Transition Region by the Sounding Rocket Experiment CLASP

    Get PDF
    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Ly line, visible light is a multilayer coating be kept to a low reflectance (<5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is coated with a thin film of the substrate MgF2 and SiO2 fused silica." As a result of the measurement, Rs = 54.5%, to achieve a Rp = 0.3%, high efficiency, of course, capable of taking out only about s-polarized light. Other reflective optical elements (the secondary mirror, the diffraction gratingcollector mirror), subjected to high-reflection coating of Al + MgF2 (reflectance of about 80%), less than 5% in the entire optical system by these (CCD Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included)

    Mapping Solar Magnetic Fields from the Photosphere to the Base of the Corona

    Full text link
    Routine ultraviolet imaging of the Sun's upper atmosphere shows the spectacular manifestation of solar activity; yet we remain blind to its main driver, the magnetic field. Here we report unprecedented spectropolarimetric observations of an active region plage and its surrounding enhanced network, showing circular polarization in ultraviolet (Mg II hh & kk and Mn I) and visible (Fe I) lines. We infer the longitudinal magnetic field from the photosphere to the very upper chromosphere. At the top of the plage chromosphere the field strengths reach more than 300 gauss, strongly correlated with the Mg II kk line core intensity and the electron pressure. This unique mapping shows how the magnetic field couples the different atmospheric layers and reveals the magnetic origin of the heating in the plage chromosphere.Comment: 50 pages, 11 figures, 1 table, published in Science Advance
    corecore