6 research outputs found

    Gut-central nervous system axis is a target for nutritional therapies

    Get PDF
    Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies

    Dental derived stem cell conditioned media for hair growth stimulation

    Get PDF
    Alopecia is a clinical condition caused by excessive hair loss which may result in baldness, the causes of which still remain elusive. Conditioned media (CM) from stem cells shows promise in regenerative medicine. Our aim was to evaluate the potential CM of dental pulp stem cells obtained from human deciduous teeth (SHED-CM) to stimulate hair growth under in vitro and in vivo conditions. SHED and hair follicle stem cells (HFSCs) (n = 3) were cultured in media combinations; i) STK2, ii) DMEM-KO+10% FBS, iii) STK2+2% FBS and profiled for the presence of positive hair growth-regulatory paracrine factors; SDF-1, HGF, VEGF-A, PDGF-BB and negative hair growth-regulatory paracrine factors; IL-1α, IL-1β, TGF-β, bFGF, TNF-α, and BDNF. The potential of CM from both cell sources to stimulate hair growth was evaluated based on the paracrine profile and measured dynamics of hair growth under in vitro conditions. The administration of CM media to telogen-staged synchronized 7-week old C3H/HeN female mice was carried out to study the potential of the CM to stimulate hair growth in vivo. SHED and HFSCs cultured in STK2 based media showed a shorter population doubling time, higher viability and better maintenance of MSC characteristics in comparison to cells cultured in DMEM-KO media. STK2 based CM contained only two negative hair growth-regulatory factors; TNF-α, IL-1 while DMEM-KO CM contained all negative hair growth-regulatory factors. The in vitro study confirmed that treatment with STK2 based media CM from passage 3 SHED and HFSCs resulted in a significantly higher number of anagen-staged hair follicles (p<0.05) and a significantly lower number of telogen-staged hair follicles (p<0.05). Administration of SHED-CM to C3H/HeN mice resulted in a significantly faster stimulation of hair growth in comparison to HFSC-CM (p<0.05), while the duration taken for complete hair coverage was similar for both CM sources. Thus, SHED-CM carries the potential to stimulate hair growth which can be used as a treatment tool for alopecia

    Patterns of epidermal growth factor receptor testing across 111 tertiary care centers in India: Result of a questionnaire-based survey

    No full text
    Background: We conducted a survey of 111 medical oncologists across India to understand the current pattern of epidermal growth factor receptor (EGFR) mutation testing at their respective centers. Methods: Medical oncologists from 111 institutes across India were interviewed face to face using a structured questionnaire. They were divided into two groups – Group 1 with in-house EGFR testing and Group 2 who send samples to central/commercial laboratories outside their institutions. Answers of the two groups were analyzed to see the prevailing patterns of EGFR testing and differences between the two groups if any. Results: Ninety-five percent (105/111) of medical oncologists recommended testing for EGFR mutations in patients with adenocarcinoma histology and 40% (44/111) recommended EGFR testing in squamous cell histology. The average time duration to get EGFR test results was 10 days in Group 1 centers versus 18 days in Group 2 centers. Ninety-six percent (106/111) of the medical oncologists from Group 1 centers requested for factoring additional sample for biomarker testing compared to 69% (77/111) of the oncologists from Group 2 centers. Sixty-nine percent (77/111) of medical oncologists in Group 1 centers would prefer to wait for the test results before initiating treatment compared to 46% (51/111) in Group 2. EGFR tyrosine-kinase inhibitors were used in only approximately 60% of patients with diagnosed EGFR mutation in the first line. For patients in whom chemotherapy was initiated while waiting for test results, 50% (56/111) of medical oncologists would prefer to complete 4–6 cycles before switching to targeted therapy. At the time of progression, rebiopsy was possible in approximately 25% of the patients. Conclusions: Turnaround time for molecular testing should improve so that eligible patients can benefit from targeted therapies in the first line. There is a need to increase the awareness among pulmonologists, oncologists, and interventional radiologists regarding the importance of adequate samples required for molecular tests
    corecore