237 research outputs found

    An adaptive perception-based image preprocessing method

    Get PDF
    The aim of this paper is to introduce an adaptive preprocessing procedure based on human perception in order to increase the performance of some standard image processing techniques. Specifically, image frequency content has been weighted by the corresponding value of the contrast sensitivity function, in agreement with the sensitiveness of human eye to the different image frequencies and contrasts. The 2D Rational dilation wavelet transform has been employed for representing image frequencies. In fact, it provides an adaptive and flexible multiresolution framework, enabling an easy and straightforward adaptation to the image frequency content. Preliminary experimental results show that the proposed preprocessing allows us to increase the performance of some standard image enhancement algorithms in terms of visual quality and often also in terms of PSNR

    Film cooling adiabatic effectiveness measurements of pressure side trailing edge cooling configurations

    Get PDF
    Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stresses, oxidation and corrosion the components located in the high pressure stages, such as the blade trailing edge. A suitable design of the cooling system for the trailing edge has to cope with geometric constraints and aerodynamic demands; state-of-the-art of cooling concepts often use film cooling on blade pressure side: the air taken from last compressor stages is ejected through discrete holes or slots to provide a cold layer between hot mainstream and the blade surface. With the goal of ensuring a satisfactory lifetime of blades, the design of efficient trailing edge film cooling schemes and, moreover, the possibility to check carefully their behavior, are hence necessary to guarantee an appropriate metal temperature distribution. For this purpose an experimental survey was carried out to investigate the film covering performance of different pressure side trailing edge cooling systems for turbine blades. The experimental test section consists of a scaled-up trailing edge model installed in an open loop suction type test rig. Measurements of adiabatic effectiveness distributions were carried out on three trailing edge cooling system configurations. The baseline geometry is composed by inclined slots separated by elongated pedestals; the second geometry shares the same cutback configuration, with an additional row of circular film cooling holes located upstream; the third model is equipped with three rows of in-line film cooling holes. Experiments have been performed at nearly ambient conditions imposing several blowing ratio values and using carbon dioxide as coolant in order to reproduce a density ratio close to the engine conditions (DR=1.52). To extend the validity of the survey a comparison between adiabatic effectiveness measurements and a prediction by correlative approach was performed to compare the experimental results with 1D methodologies

    IMPACT OF AGRICULTURAL MANAGEMENT ON COMMUNITIES OF ORIBATIDA, GAMASINA AND COLLEMBOLA IN ITALIAN AND FRENCH VINEYARDS

    Get PDF
    Quantitative and qualitative analyses among the soil microarthropods can be used in biomonitoring as tools in multi-disciplinary approach to characterize soil quality. Three groups of microarthropods - Collembola and Oribatida as detrivores and Gamasina as predators - were selected to evaluate the impact of different management treatments adopted to recover degraded soil in organic. Differences in arthropod populations between French and Italian sites were registered. In Italy, after two years of recovering treatments, an increase of the abundances of all groups, particularly detritivores in degraded plots, was observed. The population of gamasids increased, in all sites, only in non degraded plots. Soil invertebrates of similar trophic groups, like collembolans and oribatids, seem to differently respond to treatments: the collembolans were more affected by some agronomic practices enhancing soil fertility

    The Costa Concordia last cruise: The first application of high frequency monitoring based on COSMO-SkyMed constellation for wreck removal

    Get PDF
    AbstractThe Italian vessel Costa Concordia wrecked on January 13th 2012 offshore the Giglio Island (Tuscany, Italy), with the loss of 32 lives. Salvage operation of the vessel started immediately after the wreck. This operation was the largest and most expensive maritime salvage ever attempted on a wrecked ship and it ended in July 2014 when the Costa Concordia was removed from the Giglio Island, and dragged in the port of Genoa where it was dismantled. The refloating and removal phases of the Costa Concordia were monitored, in the period between 14th and 27th of July, exploiting SAR (Synthetic Aperture Radar) images acquired by the X-band COSMO-SkyMed satellite constellation in crisis mode. The main targets of the monitoring system were: (i) the detection of possible spill of pollutant material from the vessel and (ii) to exclude that oil slicks, illegally produced by other vessels, could be improperly linked to the naval convoy during its transit along the route between the Giglio Island and the port of Genoa. Results point out that the adopted monitoring system, through the use of the COSMO-SkyMed constellation, can be profitably employed to monitor emergency phases related to single ship or naval convoy over wide areas and with a suitable temporal coverage. Furthermore, the refloating and removal phases of the Costa Concordia were a success because no pollution was produced during the operations

    Thermal Emission from HII Galaxies: Discovering the Youngest Systems

    Get PDF
    We studied the radio properties of very young massive regions of star formation in HII galaxies, with the aim of detecting episodes of recent star formation in an early phase of evolution where the first supernovae start to appear. Our sample consists of 31 HII galaxies, characterized by strong Hydrogen emission lines, for which low resolution VLA 3.5cm and 6cm observations were obtained. The radio spectral energy distribution has a range of behaviours; 1) there are galaxies where the SED is characterized by a synchrotron-type slope, 2) galaxies with a thermal slope, and, 3) galaxies with possible free-free absorption at long wavelengths. The latter SEDs were found in a few galaxies and represent a signature of heavily embedded massive star clusters closely related to the early stages of massive star formation. Based on the comparison of the star formation rates determined from the recombination lines and those determined from the radio emission we find that SFR(Ha) is on average five times higher than SFR(1.4GHz). We confirm this tendency by comparing the ratio between the observed flux at 20 cm and the expected one, calculated based on the Ha star formation rates, both for the galaxies in our sample and for normal ones. This analysis shows that this ratio is a factor of 2 smaller in our galaxies than in normal ones, indicating that they fall below the FIR/radio correlation. These results suggest that the emission of these galaxies is dominated by a recent and massive star formation event in which the first supernovae (SN) just started to explode. We conclude that the systematic lack of synchrotron emission in those systems with the largest equivalent width of Hb can only be explained if those are young starbursts of less than 3.5Myr of age.Comment: Accepted for publication in Ap

    Kill rate as a tool in efficiency evaluation of Neoseiulus californicus (Acari: Phytoseiidae) mass reared on factitious food

    Get PDF
    The predatory mites of the Phytoseiidae family are crucial biological control agents widely utilized in biological pest management targeting phytophagous mites and insects. Key factors in these control strategies are that phytoseiids must be able to find their main target prey and to maintain high populations and efficacy. To reduce expenses and time-consuming production methods of mass rearing of phytoseiids, pollen and other factitious (i.e., non-natural/nontarget) hosts need to be present as an alternative food for predatory mite populations. The mass-rearing possibilities of these predators on alternative food sources, such as astigmatid mites (i.e., house and stored mites) and pollen, must be evaluated not only by the cost of rearing settings but on the basis of their efficiency maintenance in killing prey. The pest kill rate (km) is the average daily lifetime killing of the pest by the natural enemy under consideration and can represent a useful indicator for phytoseiids efficacy to rank them as BCAs on the basis of their effective killing/predation on target prey. In this study, we evidenced that 2 astigmatid mites, Glycyphagus domesticus (De Geer) and Lepidoglyphus destructor (Schrank), and Quercus ilex L. pollen can be successfully adopted as substitute food sources for mass rearing of the phytoseiid Neoseiulus californicus (MgGregor); then, we determined that these populations of BCAs maintained a consistent km at new/first impact on the main target pest, Tetranychus urticae Koch

    IC 485:a new candidate disk-maser galaxy at ∌\sim100 Mpc distance. Milliarcsecond resolution study of the galaxy nucleus and of the H2OH_{2}O megamaser

    Full text link
    Masers are a unique tool to investigate the emitting gas in the innermost regions of AGNs and to map accretion disks and tori orbiting around supermassive black holes. IC485, which is classified as a LINER or Seyfert galaxy, hosts a bright water maser whose nature is still under debate. Indeed, this might be either a nuclear disk maser, a jet/outflow maser, or even the very first `inclined water maser disk'. We aim to investigate the nature of the maser by determining the location and the distribution of the maser emission at mas resolution and by associating it with the main nuclear components of IC485. In a broader context, this work might also provide further information for better understanding the physics and the disk/jet geometry in LINER or Seyfert galaxies. We observed in 2018 the nuclear region of IC485 in continuum and spectral-line mode with the VLBA and the EVN at L, C, and K bands (linear scales from ~3 to 0.2 pc). We detected 2 water maser components separated in velocity by 472 km/s, with one centred at the systemic velocity of the nuclear region and the other at a red-shifted velocity. We measured for the first time the absolute positions of these components with an accuracy of ~0.1 mas. Assuming a maser associated with an edge-on disk in Keplerian rotation, the estimated enclosed mass is M_BH = 1.2 x 10^7 M_sun, consistent with the expected mass for a SMBH in a LINER or Seyfert galaxy. The linear distribution of the maser components and a comparison with the high sensitivity GBT spectrum strongly suggest that the bulk of the maser emission is associated with an edge-on accretion disk. This makes IC485 a new candidate for a disk-maser galaxy at the distance of 122 Mpc. In particular, thanks to the upcoming radio facilities (e.g., the SKA and the ngVLA) IC485 will play an important role in our understanding of AGNs in an unexplored volume of Universe.Comment: 13 pages, 10 figures, 6 tables, accepted by Astronomy & Astrophysic

    On the Design of Federated Learning in Latency and Energy Constrained Computation Offloading Operations in Vehicular Edge Computing Systems

    Get PDF
    With the advent of smart vehicles, several new latency-critical and data-intensive applications are emerged in Vehicular Networks (VNs). Computation offloading has emerged as a viable option allowing to resort to the nearby edge servers for remote processing within a requested service latency requirement. Despite several advantages, computation offloading over resource-limited edge servers, together with vehicular mobility, is still a challenging problem to be solved. In particular, in order to avoid additional latency due to out-of-coverage operations, Vehicular Users (VUs) mobility introduces a bound on the amount of data to be offloaded towards nearby edge servers. Therefore, several approaches have been used for finding the correct amount of data to be offloaded. Among others, Federated Learning (FL) has been highlighted as one of the most promising solving techniques, given the data privacy concerns in VNs and limited communication resources. However, FL consumes resources during its operation and therefore incurs an additional burden on resource-constrained VUs. In this work, we aim to optimize the VN performance in terms of latency and energy consumption by considering both the FL and the computation offloading processes while selecting the proper number of FL iterations to be implemented. To this end, we first propose an FL-inspired distributed learning} framework for computation offloading in VNs, and then develop a constrained optimization problem to jointly minimize the overall latency and the energy consumed. An evolutionary Genetic Algorithm is proposed for solving the problem in-hand and compared with some benchmarks. The simulation results show the effectiveness of the proposed approach in terms of latency and energy consumption
    • 

    corecore