62 research outputs found

    Composition-induced structural phase transitions in the (Ba1xLax)2In2O5+x (0pxp0.6) system

    Get PDF
    Composition-induced structural phase changes across the high temperature, fast oxide ion conducting (Ba1xLax)2In2O5+x, 0pxp0.6, system have been carefully analysed using hard mode infrared (IR) powder absorption spectroscopy, X-ray powder diffraction and electron diffraction. An orthorhombic brownmillerite to three-dimensionally disordered cubic perovskite phase transition in this system is signalled by a drastic change in slope of both wavenumber and average line widths of IR spectra as a function of composition. Some evidence is found for the existence of an intermediate tetragonal phase (previously reported to exist from electron diffraction data) around x 0:2: The new spectroscopic data have been used to compare microscopic and macroscopic strain parameters arising from variation in composition. The strain and spectroscopic data are consistent with firstorder character for the tetragonal-orthorhombic transition, while the cubic-tetragonal transition could be continuous. Differences between the variation with composition of spectral parameters and of macroscopic strain parameters are consistent with a substantial order/disorder component for the transitions. There is also evidence for precursor effects within the cubic structure before symmetry is broken

    Local structural properties of (Mn,Fe)Nb2O6 from Mössbauer and X-ray absorption spectroscopy

    Get PDF
    The MnNb2O6–FeNb2O6 solid solution has been investigated by Fe–K- and Mn–K-edge X-ray absorption (XANES and EXAFS), and Mössbauer spectroscopy. The first-shell M—O bond lengths deduced from EXAFS show a fairly small compositional dependence. A degree of static disorder, which increases with increasing manganese content, is clearly seen by the loss of correlation for the next-neighbour (NN) interaction. Hyperfine parameters from Mössbauer spectra are consistent with variations in the average environment, as recorded by X-ray data. Line broadening of the Mössbauer spectra provides evidence for next-neighbour effects and is consistent with there being no significant clustering of Fe or Mn within the samples. There appear to be differences in the way the columbite structure accommodates Fe2+ and Mn2+ ions. In ferrocolumbite all the Fe octahedra are close to being identical, while there are local structural heterogeneities at a longer length scale, presumably in ordering the precise topology of polyhedra immediately adjacent to the octahedron. By contrast, the manganocolumbite seems to have some diversity in the precise coordination at the MnO6 octahedra, but a greater uniformity in how the adjacent polyhedra are configured around them

    Optical phonons, OH vibrations, and structural modifications of phlogopite at high temperatures: An in-situ infrared spectroscopic study

    Get PDF
    The thermal behavior of optical phonons and OH vibrations of phlogopite (a trioctahedral mica) was examined at temperatures up to 1000 K using in situ infrared spectroscopy. The results showed that with increasing temperature, O–K bands in phlogopite exhibited a relatively strong variation in frequency in a manner similar to those in muscovite. The work revealed that different types of OH bands (fundamentals and combinations) have very different thermal behavior or temperature dependence, and their absorption coefficients are commonly not constant on heating. OH combination bands that are associated with summation processes of multi-phonon interactions commonly show a decrease in their intensities on heating, but in contrast combination bands due to difference processes generally exhibit an increase. This means that temperature dependencies of their absorption coefficients need to be considered when using the Beer-Lambert law to determine or estimate OH contents or hydrogen concentrations at high temperatures. The results showed a structural anomaly associated with a discontinuity in the temperature derivative of the wavenumber of Al–O and Si–O vibrations and O–H stretching near 600 K. However, framework-related phonon modes in the FIR and MIR regions do not suggest a break of the original monoclinic structural symmetry in the investigated temperature region. The complex changes are attributed to temperature-induced alteration of local configuration involving TO4 tetrahedra and a possible change of the orientation of OH dipoles, in addition to a previously reported distortion of MO6 octahedra. Increasing temperature to 1000 K also causes partial dehydroxylation, as evidenced by the disappearance of the OH band near 3623 cm−1 and the decrease in OH band height and area of other OH bands. The study did not record the formation of H2O inside phlogopite as a result of partial dehydroxylation. The work offers new data and findings that have important implications in understanding the complex structural modifications and the behavior of phonon modes and the thermal stability of hydroxyls on approaching the dehydroxylation, as well as the way hydrogen is released from micas at high temperatures. Our data also show that phologpite becomes less transparent with increasing temperature suggesting a change of radiative properties and ability to transmit heat, which could be of interest for modeling thermal-transmission in crustal rocks

    Optical phonons, OH vibrations, and structural modifications of phlogopite at high temperatures: An in-situ infrared spectroscopic study

    Get PDF
    The thermal behavior of optical phonons and OH vibrations of phlogopite (a trioctahedral mica) was examined at temperatures up to 1000 K using in situ infrared spectroscopy. The results showed that with increasing temperature, O–K bands in phlogopite exhibited a relatively strong variation in frequency in a manner similar to those in muscovite. The work revealed that different types of OH bands (fundamentals and combinations) have very different thermal behavior or temperature dependence, and their absorption coefficients are commonly not constant on heating. OH combination bands that are associated with summation processes of multi-phonon interactions commonly show a decrease in their intensities on heating, but in contrast combination bands due to difference processes generally exhibit an increase. This means that temperature dependencies of their absorption coefficients need to be considered when using the Beer-Lambert law to determine or estimate OH contents or hydrogen concentrations at high temperatures. The results showed a structural anomaly associated with a discontinuity in the temperature derivative of the wavenumber of Al–O and Si–O vibrations and O–H stretching near 600 K. However, framework-related phonon modes in the FIR and MIR regions do not suggest a break of the original monoclinic structural symmetry in the investigated temperature region. The complex changes are attributed to temperature-induced alteration of local configuration involving TO4 tetrahedra and a possible change of the orientation of OH dipoles, in addition to a previously reported distortion of MO6 octahedra. Increasing temperature to 1000 K also causes partial dehydroxylation, as evidenced by the disappearance of the OH band near 3623 cm−1 and the decrease in OH band height and area of other OH bands. The study did not record the formation of H2O inside phlogopite as a result of partial dehydroxylation. The work offers new data and findings that have important implications in understanding the complex structural modifications and the behavior of phonon modes and the thermal stability of hydroxyls on approaching the dehydroxylation, as well as the way hydrogen is released from micas at high temperatures. Our data also show that phologpite becomes less transparent with increasing temperature suggesting a change of radiative properties and ability to transmit heat, which could be of interest for modeling thermal-transmission in crustal rocks

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    08_1641Tarantino.indd

    No full text
    ABSTRACT The structural changes upon cation substitution in natural AB 2 O 6 columbites have been studied by means of single-crystal X-ray diffraction. Most of the structural variations across the MnNb 2 O 6 -FeNb 2 O 6 solid solution in completely ordered samples can be simply understood in terms of ionic radii. The substitution of Fe for the larger Mn cation causes a linear decrease of all unit-cell parameters. Going from manganocolumbite to ferrocolumbite the site A is reduced in volume and becomes less distorted. The oxygen cage around the cation assumes a more regular arrangement since the mismatch between A and B chains decreases. At the same time, the divalent cation moves toward the barycenter of the polyhedron. The B site, which is not involved in the Fe-Mn cation substitution, maintains its geometry unchanged. Ordering of divalent cations at A sites and pentavalent cations at B sites causes linear variations of a and c cell parameters. A non-linear behavior is shown by the b cell parameter that shows a minimum at order parameter Q m ∼ 0.7. A discontinuity at this Q m value is also shown by other structural parameters. Cation ordering also causes volume variations of the two octahedral sites as a consequence of the different ionic radii of the various species. Octahedral bond-length distortion parameters show that the B site is in general more distorted than the A site; distortion of the B site increases with ordering due to higher cation-cation repulsion along the B octahedral chain and to the second-order Jahn-Teller (SOJT) effect. Octahedral chains respond to modiÞ cations of the polyhedra by folding along the common edge

    Crystal structure of columbite under high pressure

    No full text
    The structural evolution of two columbites under pressure, one ferrocolumbite from Raode (Africa) and one manganocolumbite from Kragero (Norway), has been determined by single-crystal X-ray diffraction. Structural investigations at high pressure have been carried out on samples which were preliminarily annealed to attain the complete cation-ordered state. For each crystal, five complete datasets have been collected from room pressure up to ca. 7 GPa. Structure refinements converged to final discrepancy factors R ranging between 5.2 and 5.8% for both the crystals. Structure refinements of X-ray diffraction data at different pressures allowed characterisation of the mechanisms by which the columbite structure accommodates variations in pressure. A and B octahedral volumes in both samples decrease linearly as pressure increases, with a larger compression of the larger A site. The difference in polyhedral bulk moduli of the A sites for the two samples does not appear to relate directly to the octahedral sizes, the A site being more compressible in the Fe-rich sample than in the Mn-rich one. By far the most compressible direction in both the analysed samples is along b. The cations are in fact free to move along this direction, thus allowing the octahedral chains to slide over each other; this effect is particularly evident in the manganocolumbite sample which shows a steep shortening of interchain A-B distances along b. © 2010 Springer-Verlag

    High temperature structural behaviour of Li2VOSiO4

    No full text
    Structural investigations at high temperature were carried out on compound Li2VOSiO4, which crystallises with a natisite-type structure. Unit-cell parameters were measured and diffracted intensities collected at regular intervals in the temperature range 25-500°C using single crystal X-ray diffraction techniques. Thermal expansion coefficients showed positive expansion of lattice constants, greater along the c direction, and of cell volume. Reversibility of thermal expansion in the investigated temperature range was checked by measuring unit-cell parameters after the crystal was cooled down from 500°C to room temperature. Structure refinements revealed that the [VOSiO4]n2- layers are almost rigid and that the most relevant modifications occur at the intercalated ion layer. © by Oldenbourg Wissenschaftsverlag
    corecore