169 research outputs found

    Fieldwork between folders: fragments, traces, and the ruins of colonial archives

    Get PDF

    Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope

    Get PDF
    We performed Spitzer Infrared Spectrograph mapping observations covering nearly the entire extent of the Cassiopeia A supernova remnant (SNR), producing mid-infrared (5.5-35 micron) spectra every 5-10". Gas lines of Ar, Ne, O, Si, S and Fe, and dust continua were strong for most positions. We identify three distinct ejecta dust populations based on their continuum shapes. The dominant dust continuum shape exhibits a strong peak at 21 micron. A line-free map of 21 micron-peak dust made from the 19-23 micron range closely resembles the [Ar II], [O IV], and [Ne II] ejecta-line maps implying that dust is freshly formed in the ejecta. Spectral fitting implies the presence of SiO2, Mg protosilicates, and FeO grains in these regions. The second dust type exhibits a rising continuum up to 21 micron and then flattens thereafter. This ``weak 21 micron'' dust is likely composed of Al2O3 and C grains. The third dust continuum shape is featureless with a gently rising spectrum and is likely composed of MgSiO3 and either Al2O3 or Fe grains. Using the least massive composition for each of the three dust classes yields a total mass of 0.02 Msun. Using the most-massive composition yields a total mass of 0.054 Msun. The primary uncertainty in the total dust mass stems from the selection of the dust composition necessary for fitting the featureless dust as well as 70 micron flux. The freshly formed dust mass derived from Cas A is sufficient from SNe to explain the lower limit on the dust masses in high redshift galaxies.Comment: 8 figures: Accepted for the publication in Ap

    Spitzer spectral line mapping of the HH211 outflow

    Full text link
    Aims: We employ archival Spitzer slit-scan observations of the HH211 outflow in order to investigate its warm gas content, assess the jet mass flux in the form of H2 and probe for the existence of an embedded atomic jet. Methods: Detected molecular and atomic lines are interpreted by means of emission line diagnostics and an existing grid of molecular shock models. The physical properties of the warm gas are compared against other molecular jet tracers and to the results of a similar study towards the L1448-C outflow. Results: We have detected and mapped the v=0-0 S(0) - S(7) H2 lines and fine-structure lines of S, Fe+, and Si+. H2 is detected down to 5" from the source and is characterized by a "cool" T~300K and a "warm" T~1000 K component, with an extinction Av ~ 8 mag. The amount of cool H2 towards the jet agrees with that estimated from CO assuming fully molecular gas. The warm component is well fitted by C-type shocks with a low beam filling factor ~ 0.01-0.04 and a mass-flux similar to the cool H2. The fine-structure line emission arises from dense gas with ionization fraction ~0.5 - 5 x 10e-3, suggestive of dissociative shocks. Line ratios to sulfur indicate that iron and silicon are depleted compared to solar abundances by a factor ~10-50. Conclusions: Spitzer spectral mapping observations reveal for the first time a cool H2_2 component towards the CO jet of HH211 consistent with the CO material being fully molecular and warm at ~ 300 K. The maps also reveal for the first time the existence of an embedded atomic jet in the HH211 outflow that can be traced down to the central source position. Its significant iron and silicon depletion excludes an origin from within the dust sublimation zone around the protostar. The momentum-flux seems insufficient to entrain the CO jet, although current uncertainties on jet speed and shock conditions are too large for a definite conclusion.Comment: 13 pages, 10 figures, accepted for publication in A&

    Waves on the surface of the Orion molecular cloud

    Full text link
    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the `pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of `waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur

    Aspects of ABJM orbifolds with discrete torsion

    Full text link
    We analyze orbifolds with discrete torsion of the ABJM theory by a finite subgroup Γ\Gamma of SU(2)×SU(2)SU(2)\times SU(2) . Discrete torsion is implemented by twisting the crossed product algebra resulting after orbifolding. It is shown that, in general, the order mm of the cocycle we chose to twist the algebra by enters in a non trivial way in the moduli space. To be precise, the M-theory fiber is multiplied by a factor of mm in addition to the other effects that were found before in the literature. Therefore we got a ZkΓm\mathbb{Z}_{\frac{k|\Gamma|}{m}} action on the fiber. We present a general analysis on how this quotient arises along with a detailed analysis of the cases where Γ\Gamma is abelian

    OH emission from warm and dense gas in the Orion Bar PDR

    Full text link
    As part of a far-infrared (FIR) spectral scan with Herschel/PACS, we present the first detection of the hydroxyl radical (OH) towards the Orion Bar photodissociation region (PDR). Five OH rotational Lambda-doublets involving energy levels out to E_u/k~511 K have been detected (at ~65, ~79, ~84, ~119 and ~163um). The total intensity of the OH lines is I(OH)~5x10^-4 erg s^-1 cm^-2 sr^-1. The observed emission of rotationally excited OH lines is extended and correlates well with the high-J CO and CH^+ J=3-2 line emission (but apparently not with water vapour), pointing towards a common origin. Nonlocal, non-LTE radiative transfer models including excitation by the ambient FIR radiation field suggest that OH arises in a small filling factor component of warm (Tk~160-220 K) and dense (n_H~10^{6-7} cm^-3) gas with source-averaged OH column densities of ~10^15 cm^-2. High density and temperature photochemical models predict such enhanced OH columns at low depths (A_V<1) and small spatial scales (~10^15 cm), where OH formation is driven by gas-phase endothermic reactions of atomic oxygen with molecular hydrogen. We interpret the extended OH emission as coming from unresolved structures exposed to far-ultraviolet (FUV) radiation near the Bar edge (photoevaporating clumps or filaments) and not from the lower density "interclump" medium. Photodissociation leads to OH/H2O abundance ratios (>1) much higher than those expected in equally warm regions without enhanced FUV radiation fields.Comment: Accepted for publication in A&A Letters. Figure B.2. is bitmapped to lower resolutio

    A multiwavelength study of the supernova remnant G296.8-0.3

    Get PDF
    We report XMM-Newton observations of the Galactic supernova remnant G296.8-0.3, together with complementary radio and infrared data. The spatial and spectral properties of the X-ray emission, detected towards G296.8-0.3, was investigated in order to explore the possible evolutionary scenarios and the physical connexion with its unusual morphology detected at radio frequencies. G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio morphology detected in the interior of the remnant and with the shell-like radio structure observed to the northwest side of the object. The X-ray emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray spectral analysis confirms that the column density is high (NH \sim 0.64 x 10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT \sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low abundance (0.12 Z_sun). The 24 microns observations show shell-like emission correlated with part of the northwest and southeast boundaries of the SNR. In addition a point-like X-ray source is also detected close to the geometrical center of the radio SNR. The object presents some characteristics of the so-called compact central objects (CCO). Its X-ray spectrum is consistent with those found at other CCOs and the value of NH is consistent with that of G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc

    Smoking, Cardiac Symptoms, and an Emergency Care Visit: A Mixed Methods Exploration of Cognitive and Emotional Reactions

    Get PDF
    Emergency departments and hospitals are being urged to implement onsite interventions to promote smoking cessation, yet little is known about the theoretical underpinnings of behavior change after a healthcare visit. This observational pilot study evaluated three factors that may predict smoking cessation after an acute health emergency: perceived illness severity, event-related emotions, and causal attribution. Fifty smokers who presented to a hospital because of suspected cardiac symptoms were interviewed, either in the emergency department (ED) or, for those who were admitted, on the cardiac inpatient units. Their data were analyzed using both qualitative and quantitative methodologies to capture the individual, first-hand experience and to evaluate trends over the illness chronology. Reported perceptions of the event during semistructured interview varied widely and related to the individual&apos;s intentions regarding smoking cessation. No significant differences were found between those interviewed in the ED versus the inpatient unit. Although the typical profile was characterized by a peak in perceived illness severity and negative emotions at the time the patient presented in the ED, considerable pattern variation occurred. Our results suggest that future studies of eventrelated perceptions and emotional reactions should consider using multi-item and multidimensional assessment methods rated serially over the event chronology

    The Global Burden of Alveolar Echinococcosis

    Get PDF
    Human alveolar echinococcosis (AE), caused by the larval stage of the fox tapeworm Echinococcus multilocularis, is amongst the world's most dangerous zoonoses. Transmission to humans is by consumption of parasite eggs which are excreted in the faeces of the definitive hosts: foxes and, increasingly, dogs. Transmission can be through contact with the definitive host or indirectly through contamination of food or possibly water with parasite eggs. We made an intensive search of English, Russian, Chinese and other language databases. We targeted data which could give country specific incidence or prevalence of disease and searched for data from every country we believed to be endemic for AE. We also used data from other sources (often unpublished). From this information we were able to make an estimate of the annual global incidence of disease and disease burden using standard techniques for calculation of DALYs. Our studies suggest that AE results in a median of 18,235 cases globally with a burden of 666,433 DALYs per annum. This is the first estimate of the global burden of AE both in terms of global incidence and DALYs and demonstrates the burden of AE is comparable to several diseases in the neglected tropical disease cluster
    corecore