6 research outputs found

    Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance

    Get PDF
    Plants show varied cellular responses to salinity that are partly associated with maintaining low cytosolic Na+ levels and a high K+/Na+ ratio. Plant metabolites change with elevated Na+, some changes are likely to help restore osmotic balance while others protect Na+-sensitive proteins. Metabolic responses to salt stress are described for two barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differed in salinity tolerance under the experimental conditions used. After 3 weeks of salt treatment, Clipper ceased growing whereas Sahara resumed growth similar to the control plants. Compared with Clipper, Sahara had significantly higher leaf Na+ levels and less leaf necrosis, suggesting they are more tolerant to accumulated Na+. Metabolite changes in response to the salt treatment also differed between the two cultivars. Clipper plants had elevated levels of amino acids, including proline and GABA, and the polyamine putrescine, consistent with earlier suggestions that such accumulation may be correlated with slower growth and/or leaf necrosis rather than being an adaptive response to salinity. It is suggested that these metabolites may be an indicator of general cellular damage in plants. By contrast, in the more tolerant Sahara plants, the levels of the hexose phosphates, TCA cycle intermediates, and metabolites involved in cellular protection increased in response to salt. These solutes remain unchanged in the more sensitive Clipper plants. It is proposed that these responses in the more tolerant Sahara are involved in cellular protection in the leaves and are involved in the tolerance of Sahara leaves to high Na+

    Genotype and Growing Environment Interaction Shows a Positive Correlation between Substrates of Raffinose Family Oligosaccharides (RFO) Biosynthesis and Their Accumulation in Chickpea (Cicer arietinum L.) Seeds

    Get PDF
    To develop genetic improvement strategies to modulate raffinose family oligosaccharides (RFO) concentration in chickpea (Cicer arietinum L.) seeds, RFO and their precursor concentrations were analyzed in 171 chickpea genotypes from diverse geographical origins. The genotypes were grown in replicated trials over two years in the field (Patancheru, India) and in the greenhouse (Saskatoon, Canada). Analysis of variance revealed a significant impact of genotype, environment, and their interaction on RFO concentration in chickpea seeds. Total RFO concentration ranged from 1.58 to 5.31 mmol/100 g and from 2.11 to 5.83 mmol/100 g in desi and kabuli genotypes, respectively. Sucrose (0.60āˆ’3.59 g/100 g) and stachyose (0.18āˆ’2.38 g/ 100 g) were distinguished as the major soluble sugar and RFO, respectively. Correlation analysis revealed a significant positive correlation between substrate and product concentration in RFO biosynthesis. In chickpea seeds, raffinose, stachyose, and verbascose showed a moderate broad sense heritability (0.25āˆ’0.56), suggesting the use of a multilocation trials based approach in chickpea seed quality improvement programs
    corecore