206 research outputs found

    A magnetic phase-transition graphene transistor with tunable spin polarization

    Full text link
    Graphene nanoribbons (GNRs) have been proposed as potential building blocks for field effect transistor (FET) devices due to their quantum confinement bandgap. Here, we propose a novel GNR device concept, enabling the control of both charge and spin signals, integrated within the simplest three-terminal device configuration. In a conventional FET device, a gate electrode is employed to tune the Fermi level of the system in and out of a static bandgap. By contrast, in the switching mechanism proposed here, the applied gate voltage can dynamically open and close an interaction gap, with only a minor shift of the Fermi level. Furthermore, the strong interplay of the band structure and edge spin configuration in zigzag ribbons enables such transistors to carry spin polarized current without employing an external magnetic field or ferromagnetic contacts. Using an experimentally validated theoretical model, we show that such transistors can switch at low voltages and high speed, and the spin polarization of the current can be tuned from 0% to 50% by using the same back gate electrode. Furthermore, such devices are expected to be robust against edge irregularities and can operate at room temperature. Controlling both charge and spin signal within the simplest FET device configuration could open up new routes in data processing with graphene based devices.Comment: 16 pages, 5 figures, accepted for publication in 2D Material

    Screening and interlayer coupling in multilayer graphene field-effect transistors

    Full text link
    With the motivation of improving the performance and reliability of aggressively scaled nano-patterned graphene field-effect transistors, we present the first systematic experimental study on charge and current distribution in multilayer graphene field-effect transistors. We find a very particular thickness dependence for Ion, Ioff, and the Ion/Ioff ratio, and propose a resistor network model including screening and interlayer coupling to explain the experimental findings. In particular, our model does not invoke modification of the linear energy-band structure of graphene for the multilayer case. Noise reduction in nano-scale few-layer graphene transistors is experimentally demonstrated and can be understood within this model as well.Comment: 13 pages, 4 figures, 20 reference

    Exfoliation of single layer BiTeI flakes

    Get PDF
    Spin orbit interaction is strongly enhanced in structures where a heavy element is embedded in an inversion asymmetric crystal field. A simple way for realizing such a setup is to take a single atomic layer of a heavy element and encapsulate it between two atomic layers of different elemental composition. BiTeI is a promising candidate for such a 2D crystal. In its bulk form BiTeI consists of loosely coupled three atom thick layers where a layer of high atomic number Bi are sandwiched between Te and I sheets. Despite considerable recent attention to bulk BiTeI due to its giant Rashba spin splitting, the isolation of a single layer remained elusive. In this work we report the first successful isolation and characterization of a single layer of BiTeI using a novel exfoliation technique on stripped gold. Our scanning probe studies and first principles calculations show that the fabricated 100 mu m sized BiTeI flakes are stable at ambient conditions. Giant Rashba splitting and spin-momentum locking of this new 2D crystal opens the way towards novel spintronic applications and synthetic topological heterostructures

    Electronic transport through ordered and disordered graphene grain boundaries

    Get PDF
    The evolution of electronic wave packets (WPs) through grain boundaries (GBs) of various structures in graphene was investigated by the numerical solution of the time-dependent Schrödinger equation. WPs were injected from a simulated STM tip placed above one of the grains. Electronic structure of the GBs was calculated by ab-initio and tight-binding methods. Two main factors governing the energy dependence of the transport have been identified: the misorientation angle of the two adjacent graphene grains and the atomic structure of the GB. In case of an ordered GB made of a periodic repetition of pentagon-heptagon pairs, it was found that the transport at high and low energies is mainly determined by the misorientation angle, but the transport around the Fermi energy is correlated with the electronic structure of the GB. A particular line defect with zero misorientation angle Lahiri et al., behaves as a metallic nanowire and shows electron-hole asymmetry for hot electrons or holes. To generate disordered GBs, found experimentally in CVD graphene samples, a Monte-Carlo-like procedure has been developed. Results show a reduced transport for the disordered GBs, primarily attributed to electronic localized states caused by C atoms with only two covalent bonds. © 2013 Elsevier Ltd. All rights reserved

    From One Electron to One Hole: Quasiparticle Counting in Graphene Quantum Dots Determined by Electrochemical and Plasma Etching

    Get PDF
    Graphene is considered to be a promising material for future electronics. The envisaged transistor applications often rely on precision cutting of graphene sheets with nanometer accuracy. In this letter we demonstrate graphene-based quantum dots created by using atomic force microscopy (AFM) with tip-assisted electrochemical etching. This lithography technique provides resolution of about 20 nm, which can probably be further improved by employing sharper tips and better humidity control. The behavior of our smallest dots in magnetic field has allowed us to identify the charge neutrality point and distinguish the states with one electron, no charge and one hole left inside the quantum dot

    Facile Synthesis of High Quality Graphene Nanoribbons

    Full text link
    Graphene nanoribbons have attracted attention for their novel electronic and spin transport properties1-6, and because nanoribbons less than 10 nm wide have a band gap that can be used to make field effect transistors. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge. Here, we show that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotube using mechanical sonication in an organic solvent. The nanoribbons exhibit very high quality, with smooth edges (as seen by high-resolution transmission electron microscopy), low ratios of disorder to graphitic Raman bands, and the highest electrical conductance and mobility reported to date (up to 5e2/h and 1500 cm2/Vs for ribbons 10-20 nm in width). Further, at low temperature, the nanoribbons exhibit phase coherent transport and Fabry-Perot interference, suggesting minimal defects and edge roughness. The yield of nanoribbons was ~2% of the starting raw nanotube soot material, which was significantly higher than previous methods capable of producing high quality narrow nanoribbons1. The relatively high yield synthesis of pristine graphene nanoribbons will make these materials easily accessible for a wide range of fundamental and practical applications.Comment: Nature Nanotechnology in pres

    Direct Imaging of Graphene Edges: Atomic Structure and Electronic Scattering

    Get PDF
    We report an atomically-resolved scanning tunneling microscopy (STM) investigation of the edges of graphene grains synthesized on Cu foils by chemical vapor deposition (CVD). Most of the edges are macroscopically parallel to the zigzag directions of graphene lattice. These edges have microscopic roughness that is found to also follow zigzag directions at atomic scale, displaying many ~120 degree turns. A prominent standing wave pattern with periodicity ~3a/4 (a being the graphene lattice constant) is observed near a rare-occurring armchair-oriented edge. Observed features of this wave pattern are consistent with the electronic intervalley backscattering predicted to occur at armchair edges but not at zigzag edges

    Rotation Symmetry Spontaneous Breaking of Edge States in Zigzag Carbon Nanotubes

    Full text link
    Analytical solutions of the edge states were obtained for the (N, 0) type carbon nanotubes with distorted ending bonds. It was found that the edge states are mixed via the distortion. The total energies for N=5 and N>=7 are lower in the asymmetric configurations of ending bonds than those having axial rotation symmetry. Thereby the symmetry is breaking spontaneously. The results imply that the symmetry of electronic states at the apex depends on the occupation; the electron density pattern at the apex could change dramatically and could be controlled by applying an external field.Comment: 19 pages, 3 figure

    Fast route to obtain Al2O3-based nanocomposites employing graphene oxide: Synthesis and Sintering

    Full text link
    A fast approach based on microwave technology was employed for the sintering of novel composites of alumina and using graphene oxide (GO) as susceptor. The thermal stability and structure of GO materials produced by chemical oxidation of graphite were characterized. The morphology, structure and mechanical properties of the composites sintered by microwave approach were reported to the counterparts sintered by conventional method. The results indicated the formation of an interconnecting graphene network promoted the electrical conductivity in the composite having only 2 wt.% GO. Hardness and elastic modulus decreased significantly in samples sintered by conventional method due to lower values of density while microwave technology allowed to achieve a positive effect on the densification and showed a smaller grain size when compared to the one achieved by conventional heating. (C) 2014 Elsevier Ltd. All rights reserved.Financial support from European Commission (project no. NMP3-SL-2010-246073), Universidad Politecnica de Valencia (project SP20120677) and Ministerio de Economia y Competitividad - MINECO (project TEC2012-37532-C02-01, co-funded by ERDF (European Regional Development Funds) is gratefully acknowledged. A.B. acknowledges the Spanish Ministry of Science and Innovation (contract JCI-2011-10498). A.P. acknowledges support from Romanian Authority for Scientific Research - UEFISCDI (project no. PN-II-RU-PD-2012-3-0124).Benavente Martínez, R.; Pruna, AI.; Borrell Tomás, MA.; Salvador Moya, MD.; Pullini, D.; Penaranda-Foix, FL.; Busquets Mataix, DJ. (2015). Fast route to obtain Al2O3-based nanocomposites employing graphene oxide: Synthesis and Sintering. Materials Research Bulletin. 64:245-251. https://doi.org/10.1016/j.materresbull.2014.12.075S2452516

    Snap-through instability of graphene on substrates

    Get PDF
    We determine the graphene morphology regulated by substrates with herringbone and checkerboard surface corrugations. As the graphene/substrate interfacial bonding energy and the substrate surface roughness vary, the graphene morphology snaps between two distinct states: 1) closely conforming to the substrate and 2) remaining nearly flat on the substrate. Such a snapthrough instability of graphene can potentially lead to desirable electronic properties to enable graphene-based devices.Comment: 13 pages, 4 figures; Nanoscale Research Letters, in press, 200
    • …
    corecore