50 research outputs found

    Comparative evaluation of anti-diabetic activity of fresh juice and ethanolic extract of Sunderban mangrove Rhizophora mucronata Lam. leaves in animal model

    Get PDF
    Background: Mangrove flora possess compounds with potential medicinal values with unique bioactive components. Traditionally Rhizophora mucronata, a mangrove has been used extensively for the treatment of diabetes. Studies revealed that, the leaves of Rhizophora (Bhora) had promising anti-diabetic action in rat model.Methods: A comparative analysis of the anti-diabetic action of fresh juice and ethanolic extract of Rhizophora mucronata leaves was carried out in Streptozotocin induced diabetic model and the different biochemical parameters were evaluated.Results: Present research explored a comparative analysis of the anti-diabetic action of fresh juice and ethanolic extract of leaves of Rhizophora mucronata Lam. in Streptozotocin induced diabetic model. The ethanolic extract showed more potent effect in lowering the elevated blood sugar in the diabetic rats, 200mg/kg was the most effective dose for both the extracts. The ethanol extract was more beneficial having potent lipid lowering action along with anti-hyperglycemic property.Conclusions: This supports the scientific validation for using Rhizophora mucronata leaves in the treatment of diabetes as traditional folk medicine. Identification of the bioactive molecule is under process

    Critical properties of spherically symmetric black hole accretion in Schwarzschild geometry

    Get PDF
    The stationary spherically symmetric accretion flow in the Schwarzschild metric has been set up as an autonomous first-order dynamical system, and it has been studied completely analytically. Of the three possible critical points in the flow, the one that is physically realistic behaves like the saddle point of the standard Bondi accretion problem. One of the two remaining critical points exhibits the strange mathematical behaviour of being either a saddle point or a centre-type point, depending on the values of the flow parameters. The third critical point is always unphysical and behaves like a centre-type point. The treatment has been extended to pseudo-Schwarzschild flows for comparison with the general relativistic analysis.Comment: 8 pages, 4 figures, mn2e.cls use

    Intensity modulated radiotherapy in carcinoma cervix with metastatic para-aortic nodes: an institutional experience from a Regional Cancer Centre of Eastern India

    Get PDF
    BACKGROUND: Cervical cancer is a major health problem, especially in developing countries like India. Extended field radiotherapy (EFRT) for cancer cervix treatment remains a challenging task for radiation oncologists. In the last decade studies have shown that EFRT using intensity modulated radiotherapy (IMRT) is feasible in treating gynaecological malignancies but there is a dearth of literature on this specific topic from this part of the world where patient profile differs greatly in several aspects from that of the western world. The aim of the study was evaluation of treatment response and toxicity profile in cases of carcinoma cervix with metastatic para-aortic nodes treated with intensity modulated radiotherapy technique. MATERIALS AND METHODS: In this retrospective study the treatment records of 45 para-aortic node positive cervical cancer patients treated with EFRT (IMRT) and concurrent cisplatin were analysed for evaluation of loco-regional control and toxicities. RESULTS: Forty-four patients received full course of treatment. Among those 44 patients, 93.2% achieved complete response. Overall, the treatment was tolerated well and toxicities were within acceptable limits. Acute grade 3-4 toxicities were observed mostly in the form of anaemia and leucopenia. Most common late toxicities were those of small and large intestine. CONCLUSION: EFRT with concurrent chemotherapy was successfully delivered for para-aortic nodes positive cervical cancer patients in Indian scenario where under-nutrition, infection, anaemia and several other factors adversely influence treatment outcome. Pelvic and para-aortic control rates were satisfactory. The technique was associated with an acceptable acute and late toxicity profile

    The role of flow geometry in influencing the stability criteria for low angular momentum axisymmetric black hole accretion

    Full text link
    Using mathematical formalism borrowed from dynamical systems theory, a complete analytical investigation of the critical behaviour of the stationary flow configuration for the low angular momentum axisymmetric black hole accretion provides valuable insights about the nature of the phase trajectories corresponding to the transonic accretion in the steady state, without taking recourse to the explicit numerical solution commonly performed in the literature to study the multi-transonic black hole accretion disc and related astrophysical phenomena. Investigation of the accretion flow around a non rotating black hole under the influence of various pseudo-Schwarzschild potentials and forming different geometric configurations of the flow structure manifests that the general profile of the parameter space divisions describing the multi-critical accretion is roughly equivalent for various flow geometries. However, a mere variation of the polytropic index of the flow cannot map a critical solution from one flow geometry to the another, since the numerical domain of the parameter space responsible to produce multi-critical accretion does not undergo a continuous transformation in multi-dimensional parameter space. The stationary configuration used to demonstrate the aforementioned findings is shown to be stable under linear perturbation for all kind of flow geometries, black hole potentials, and the corresponding equations of state used to obtain the critical transonic solutions. Finally, the structure of the acoustic metric corresponding to the propagation of the linear perturbation studied are discussed for various flow geometries used.Comment: 13 pages. 5 figure

    PbS-ZnO Solar Cell: A Numerical Simulation

    Get PDF
    Nanoscale PbS, especially quantum dots (QDs) are of interest in applications, such as, solar cells and photodetectors because of tunability of band gap from 0.5 to 3 eV. Recently, ZnO/PbS solar cells with 8.55 % conversion efficiency have been reported with films made deposited from ligand exchanged PbS QDs. However, nanocrystalline PbS is easier to fabricate than QDs. This paper reports theoretical investigation into the use of nanocrystalline PbS in place of QDs as solar cell absorber. Solar cells with a structure of SLG/ITO/ZnO or CdS/PbS/Al was simulated using SCAPS software. We have used two n-type materials one is ZnO and second is CdS. The comparative simulated device performance was studied by currentvoltage (I-V) characteristics and quantum efficiency (QE). The final results reveal a power conversion efficiency of 18.5 % for solar cells with p-PbS as absorber and n-ZnO as buffer and 16.8 % for n-CdS buffer layer

    Hysteresis effects and diagnostics of the shock formation in low angular momentum axisymmetric accretion in the Kerr metric

    Full text link
    The secular evolution of the purely general relativistic low angular momentum accretion flow around a spinning black hole is shown to exhibit hysteresis effects. This confirms that a stationary shock is an integral part of such an accretion disc in the Kerr metric. The equations describing the space gradient of the dynamical flow velocity of the accreting matter have been shown to be equivalent to a first order autonomous dynamical systems. Fixed point analysis ensures that such flow must be multi-transonic for certain astrophysically relevant initial boundary conditions. Contrary to the existing consensus in the literature, the critical points and the sonic points are proved not to be isomorphic in general. Homoclinic orbits for the flow flow possessing multiple critical points select the critical point with the higher entropy accretion rate, confirming that the entropy accretion rate is the degeneracy removing agent in the system. However, heteroclinic orbits are also observed for some special situation, where both the saddle type critical points of the flow configuration possesses identical entropy accretion rate. Topologies with heteroclinic orbits are thus the only allowed non removable degenerate solutions for accretion flow with multiple critical points, and are shown to be structurally unstable. Depending on suitable initial boundary conditions, a homoclinic trajectory can be combined with a standard non homoclinic orbit through an energy preserving Rankine-Hugoniot type of stationary shock. An effective Lyapunov index has been proposed to analytically confirm why certain class of transonic flow can not accommodate shock solutions even if it produces multiple critical points. (Abridged)Comment: mn2e.cls format. 24 pages. 4 figure

    An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion

    Full text link
    We apply the theory of algebraic polynomials to analytically study the transonic properties of general relativistic hydrodynamic axisymmetric accretion onto non-rotating astrophysical black holes. For such accretion phenomena, the conserved specific energy of the flow, which turns out to be one of the two first integrals of motion in the system studied, can be expressed as a 8th^{th} degree polynomial of the critical point of the flow configuration. We then construct the corresponding Sturm's chain algorithm to calculate the number of real roots lying within the astrophysically relevant domain of R\mathbb{R}. This allows, for the first time in literature, to {\it analytically} find out the maximum number of physically acceptable solution an accretion flow with certain geometric configuration, space-time metric, and equation of state can have, and thus to investigate its multi-critical properties {\it completely analytically}, for accretion flow in which the location of the critical points can not be computed without taking recourse to the numerical scheme. This work can further be generalized to analytically calculate the maximal number of equilibrium points certain autonomous dynamical system can have in general. We also demonstrate how the transition from a mono-critical to multi-critical (or vice versa) flow configuration can be realized through the saddle-centre bifurcation phenomena using certain techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and Gravitation

    Quasi-viscous accretion flow -- I: Equilibrium conditions and asymptotic behaviour

    Full text link
    In a novel approach to studying viscous accretion flows, viscosity has been introduced as a perturbative effect, involving a first-order correction in the α\alpha-viscosity parameter. This method reduces the problem of solving a second-order nonlinear differential equation (Navier-Stokes equation) to that of an effective first-order equation. Viscosity breaks down the invariance of the equilibrium conditions for stationary inflow and outflow solutions, and distinguishes accretion from wind. Under a dynamical systems classification, the only feasible critical points of this "quasi-viscous" flow are saddle points and spirals. A linearised and radially propagating time-dependent perturbation gives rise to secular instability on large spatial scales of the disc. Further, on these same length scales, the velocity evolution equation of the quasi-viscous flow has been transformed to bear a formal closeness with Schr\"odinger's equation with a repulsive potential. Compatible with the transport of angular momentum to the outer regions of the disc, a viscosity-limited length scale has been defined for the full spatial extent over which the accretion process would be viable.Comment: 15 page
    corecore