110 research outputs found

    Mechanisms associated with the synergistic induction of resistance to tobacco black shank in tobacco by arbuscular mycorrhizal fungi and β-aminobutyric acid

    Get PDF
    Tobacco black shank (TBS), caused by Phytophthora nicotianae, is one of the most harmful diseases of tobacco. There are many studies have examined the mechanism underlying the induction of disease resistance by arbuscular mycorrhizal fungi (AMF) and β-aminobutyric acid (BABA) alone, but the synergistic effects of AMF and BABA on disease resistance have not yet been studied. This study examined the synergistic effects of BABA application and AMF inoculation on the immune response to TBS in tobacco. The results showed that spraying BABA on leaves could increase the colonization rate of AMF, the disease index of tobacco infected by P.nicotianae treated with AMF and BABA was lower than that of P.nicotianae alone. The control effect of AMF and BABA on tobacco infected by P.nicotianae was higher than that of AMF or BABA and P.nicotianae alone. Joint application of AMF and BABA significantly increased the content of N, P, and K in the leaves and roots, in the joint AMF and BABA treatment than in the sole P. nicotianae treatment. The dry weight of plants treated with AMF and BABA was 22.3% higher than that treated with P.nicotianae alone. In comparison to P. nicotianae alone, the combination treatment with AMF and BABA had increased Pn, Gs, Tr, and root activity, while P. nicotianae alone had reduced Ci, H2O2 content, and MDA levels. SOD, POD, CAT, APX, and Ph activity and expression levels were increased under the combined treatment of AMF and BABA than in P.nicotianae alone. In comparison to the treatment of P.nicotianae alone, the combined use of AMF and BABA increased the accumulation of GSH, proline, total phenols, and flavonoids. Therefore, the joint application of AMF and BABA can enhance the TBS resistance of tobacco plants to a greater degree than the application of either AMF or BABA alone. In summary, the application of defense-related amino acids, combined with inoculation with AMF, significantly promoted immune responses in tobacco. Our findings provide new insights that will aid the development and use of green disease control agents

    Travel Recommendation via Author Topic Model Based Collaborative Filtering

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Graphene as a Promising Electrode for Low-Current Attenuation in Nonsymmetric Molecular Junctions

    Get PDF
    International audienceWe have measured the single-molecule conductance of 1,n\it n-alkanedithiol molecular bridges (n\it n = 4, 6, 8, 10, 12) on a graphene substrate using scanning tunneling microscopy (STM)-formed electrical junctions. The conductance values of this homologous series ranged from 2.3 nS (n\it n= 12) to 53 nS (n\it n= 4), with a decay constant βn_n of 0.40 per methylene (−CH2_2) group. This result is explained by a combination of density functional theory (DFT) and Keldysh− Green function calculations. The obtained decay, which is much lower than the one obtained for symmetric gold junctions, is related to the weak coupling at the molecule−graphene interface and the electronic structure of graphene. As a consequence, we show that using graphene nonsymmetric junctions and appropriate anchoring groups may lead to a much-lower decay constant and more-conductive molecular junctions at longer lengths

    Measurement and Analysis of Mobile Web Cache Performance

    Full text link
    The Web browser is a killer app on mobile devices such as smartphones. However, the user experience of mobile Web browsing is undesirable because of the slow resource loading. To improve the performance of Web resource loading, caching has been adopted as a key mechanism. However, the existing passive measurement studies cannot comprehensively characterize the performance of mobile Web caching. For example, most of these studies mainly focus on client-side implementations but not server-side configurations, suffer from biased user behaviors, and fail to study 'miscached' resources. To address these issues, in this paper, we present a proactive approach for a comprehensive measurement study on mobile Web cache performance. The key idea of our approach is to proactively crawl resources from hundreds of websites periodically with a fine-grained time interval. Thus, we are able to uncover the resource update history and cache configurations at the server side, and analyze the cache performance in various time granularities. Based on our collected data, we build a new cache analysis model and study the upper bound of how high percentage of resources could potentially be cached and how effective the caching works in practice. We report detailed analysis results of different websites and various types of Web resources, and identify the problems caused by unsatisfactory cache performance. In particular, we identify two major problems - Redundant Transfer and Miscached Resource, which lead to unsatisfactory cache performance. We investigate three main root causes: Same Content, Heuristic Expiration, and Conservative Expiration Time, and discuss what mobile Web developers can do to mitigate those problems.EI691-70

    Construction and Characterization of a Chimeric Virus (BIV/HIV-1) Carrying the Bovine Immunodeficiency Virus \u3ci\u3egag\u3c/i\u3e-\u3ci\u3epol\u3c/i\u3e Gene: Research Letters

    Get PDF
    HIV-1HXB2 5′LTR region, most of BIVR29 gag-pol segment and HIV-1HXB2 pol IN-3′LTR region were respectively amplified. A chimeric clone, designated as pHBIV3753, was constructed by cloning three fragments sequentially into pUC18. MT4 cells were transfected with pHBIV3753. The replication and expressions of the chimeric virus (HBIV3753) were monitored by RT activity and IFA. The results firstly demonstrated that it is possible to generate a new type of the BIV/HIV-1 chimeric virus containing BIV gag-pol gene

    Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene-gold nanogap electrodes

    Get PDF
    Graphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that transport is consistent with phase-coherent tunneling, but with an attenuations factor βN = 0.69 per methyl unit, which is lower than the value measured for Au-molecule-Au junctions. Comparison with density-functional-theory calculations of electron transport through graphene-molecule-Au junctions and Au-molecule-Au junctions reveals that this difference is due to the difference in Fermi energies of the two types of junction, relative to the frontier orbitals of the molecules. For most molecules, their electrical conductance in graphene-molecule-Au junctions is higher than that in Au-molecule-Au junctions, which suggests that graphene offers superior electrode performance, when utilizing carboxylic acid anchor groups

    Long-term trends and drivers of aerosol pH in eastern China

    Get PDF
    Aerosol acidity plays a key role in regulating the chemistry and toxicity of atmospheric aerosol particles. The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols. Here, we reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China, calculated with the ISORROPIA model based on observed gas and aerosol compositions. The implementation of the Air Pollution Prevention and Control Action Plan led to −35.8 %, −37.6 %, −9.6 %, −81.0 % and 1.2 % changes of PM2.5, SO42-, NHx, non-volatile cations (NVCs) and NO3- in the Yangtze River Delta (YRD) region during this period. Different from the drastic changes of aerosol compositions due to the implementation of the Air Pollution Prevention and Control Action Plan, aerosol pH showed a minor change of −0.24 over the 9 years. Besides the multiphase buffer effect, the opposite effects from the changes of SO42- and non-volatile cations played key roles in determining this minor pH trend, contributing to a change of +0.38 and −0.35, respectively. Seasonal variations in aerosol pH were mainly driven by the temperature, while the diurnal variations were driven by both temperature and relative humidity. In the future, SO2, NOx and NH3 emissions are expected to be further reduced by 86.9 %, 74.9 % and 41.7 % in 2050 according to the best health effect pollution control scenario (SSP1-26-BHE). The corresponding aerosol pH in eastern China is estimated to increase by ∼0.19, resulting in 0.04 less NO3- and 0.12 less NH4+ partitioning ratios, which suggests that NH3 and NOx emission controls are effective in mitigating haze pollution in eastern China.</p

    Carbon-contacted single molecule electrical junctions

    Get PDF
    International audienceA fully metal-free molecular junction (MJ) has been built by using an electrochemically etched carbon fibre STM tip as the top electrode and graphene as the bottom electrode. The corresponding conductance values for 1,n-alkanediamine and 1,nn-alkanedithiol (nn = 2, 4, 6, 8 and 10) have been measured using the STM-II(s) technique. The tunnelling decay constant of the alkanediamine and alkanedithiol junctions with these carbon contacts is much lower than the corresponding metal contacted junctions of 0.24 and 0.38 per –CH_2 unit, but the junction conductance with these carbon contacts is also lower. The carbon fibre tip can be considered a good candidate as an electrode. Compared with a gold tip, the carbon fibre tip leads to correspondingly lower molecular junction conductanc

    Fast and straightforward analysis approach of charge transport data in single molecule junctions

    Get PDF
    International audienceIn this study, we introduce an efficient data sorting algorithm, including filters for noisy signals, conductance mapping for analyzing the most dominant conductance group and sub-population groups. The capacity of our data analysis process has also been corroborated on real experimental data sets of Au-1,6-hexanedithiol-Au and Au-1,8-octanedithiol-Au molecular junctions. The fully automated and unsupervised program requires less than one minute on a standard PC to sort the data and generate histograms. The resulting one-dimensional and two-dimensional log histograms give conductance values in good agreement with previous studies. Our algorithm is a straightforward, fast and user-friendly tool for single molecule charge transport data analysis. We also analyze the data in a form of a conductance map which can offer evidence for diversity in molecular conductance. The code for automatic data analysis is openly available, well-documented and ready to use, thereby offering a useful new tool for single molecule electronics
    corecore