13 research outputs found

    Posttranslational modification of CENP-A influences the conformation of centromeric chromatin

    Get PDF
    Centromeres are chromosomal loci required for accurate segregation of sister chromatids during mitosis. The location of the centromere on the chromosome is not dependent on DNA sequence, but rather it is epigenetically specified by the histone H3 variant centromere protein A (CENP-A). The N-terminal tail of CENP-A is highly divergent from other H3 variants. Canonical histone N termini are hotspots of conserved posttranslational modification; however, no broadly conserved modifications of the vertebrate CENP-A tail have been previously observed. Here, we report three posttranslational modifications on human CENP-A N termini using high-resolution MS: trimethylation of Gly1 and phosphorylation of Ser16 and Ser18. Our results demonstrate that CENP-A is subjected to constitutive initiating methionine removal, similar to other H3 variants. The nascent N-terminal residue Gly1 becomes trimethylated on the Ī±-amino group. We demonstrate that the N-terminal RCC1 methyltransferase is capable of modifying the CENP-A N terminus. Methylation occurs in the prenucleosomal form and marks the majority of CENP-A nucleosomes. Serine 16 and 18 become phosphorylated in prenucleosomal CENP-A and are phosphorylated on asynchronous and mitotic nucleosomal CENP-A and are important for chromosome segregation during mitosis. The double phosphorylation motif forms a salt-bridged secondary structure and causes CENP-A N-terminal tails to form intramolecular associations. Analytical ultracentrifugation of phospho-mimetic CENP-A nucleosome arrays demonstrates that phosphorylation results in greater intranucleosome associations and counteracts the hyperoligomerized state exhibited by unmodified CENP-A nucleosome arrays. Our studies have revealed that the major modifications on the N-terminal tail of CENP-A alter the physical properties of the chromatin fiber at the centromere

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBankĀ® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov

    Both tails and the centromere targeting domain of CENP-A are required for centromere establishment

    Get PDF
    The centromereā€”defined by the presence of nucleosomes containing the histone H3 variant, CENP-Aā€”is the chromosomal locus required for the accurate segregation of chromosomes during cell division. Although the sequence determinants of human CENP-A required to maintain a centromere were reported, those that are required for early steps in establishing a new centromere are unknown. In this paper, we used gain-of-function histone H3 chimeras containing various regions unique to CENP-A to investigate early events in centromere establishment. We targeted histone H3 chimeras to chromosomally integrated Lac operator sequences by fusing each of the chimeras to the Lac repressor. Using this approach, we found surprising contributions from a small portion of the N-terminal tail and the CENP-A targeting domain in the initial recruitment of two essential constitutive centromere proteins, CENP-C and CENP-T. Our results indicate that the regions of CENP-A required for early events in centromere establishment differ from those that are required for maintaining centromere identity

    DNA Binding Restricts the Intrinsic Conformational Flexibility of Methyl CpG Binding Protein 2 (MeCP2)*

    No full text
    Mass spectrometry-based hydrogen/deuterium exchange (H/DX) has been used to define the polypeptide backbone dynamics of full-length methyl CpG binding protein 2 (MeCP2) when free in solution and when bound to unmethylated and methylated DNA. Essentially the entire MeCP2 polypeptide chain underwent H/DX at rates faster than could be measured (i.e. complete exchange in ā‰¤10 s), with the exception of the methyl DNA binding domain (MBD). Even the H/DX of the MBD was rapid compared with that of a typical globular protein. Thus, there is no single tertiary structure of MeCP2. Rather, the full-length protein rapidly samples many different conformations when free in solution. When MeCP2 binds to unmethylated DNA, H/DX is slowed several orders of magnitude throughout the MBD. Binding of MeCP2 to methylated DNA led to additional minor H/DX protection, and only locally within the N-terminal portion of the MBD. H/DX also was used to examine the structural dynamics of the isolated MBD carrying three frequent mutations associated with Rett syndrome. The effects of the mutations ranged from very little (R106W) to a substantial increase in conformational sampling (F155S). Our H/DX results have yielded fine resolution mapping of the structure of full-length MeCP2 in the absence and presence of DNA, provided a biochemical basis for understanding MeCP2 function in normal cells, and predicted potential approaches for the treatment of a subset of RTT cases caused by point mutations that destabilize the MBD
    corecore